Cross-Compiled Linux From Scratch

Version 1.2.0-PowerPC

Copyright © 2005-2012, Joe Ciccone, Jim Gifford, & Ryan Oliver

All rights reserved.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Linux® is a registered trademark of Linus Torvalds.

This book is based on the "Linux From Scratch" book, that was released under the following license:

Copyright © 1999–2012, Gerard Beekmans

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions in any form must retain the above copyright notice, this list of conditions and the following disclaimer

  • Neither the name of “Linux From Scratch” nor the names of its contributors may be used to endorse or promote products derived from this material without specific prior written permission

  • Any material derived from Linux From Scratch must contain a reference to the “Linux From Scratch” project

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


Table of Contents

Preface

Foreword

The Linux From Scratch Project has seen many changes in the few years of its existence. I personally became involved with the project in 1999, around the time of the 2.x releases. At that time, the build process was to create static binaries with the host system, then chroot and build the final binaries on top of the static ones.

Later came the use of the /static directory to hold the initial static builds, keeping them separated from the final system, then the PureLFS process developed by Ryan Oliver and Greg Schafer, introducing a new toolchain build process that divorces even our initial builds from the host. Finally, LFS 6 bought Linux Kernel 2.6, the udev dynamic device structure, sanitized kernel headers, and other improvements to the Linux From Scratch system.

The one "flaw" in LFS is that it has always been based on an x86 class processor. With the advent of the Athlon 64 and Intel EM64T processors, the x86-only LFS is no longer ideal. Throughout this time, Ryan Oliver developed and documented a process by which you could build Linux for any system and from any system, by use of cross-compilation techniques. Thus, the Cross-Compiled LFS (CLFS) was born.

CLFS follows the same guiding principles the LFS project has always followed, e.g., knowing your system inside and out by virtue of having built the system yourself. Additionally, during a CLFS build, you will learn advanced techniques such as cross-build toolchains, multilib support (32 & 64-bit libraries side-by-side), alternative architectures such as Sparc, MIPS, and Alpha, and much more.

We hope you enjoy building your own CLFS system, and the benefits that come from a system tailored to your needs.

--
Jeremy Utley, CLFS 1.x Release Manager (Page Author)
Jim Gifford, CLFS Project Co-leader
Ryan Oliver, CLFS Project Co-leader
Joe Ciccone, CLFS Project Co-leader
Jonathan Norman, Justin Knierim, Chris Staub, Matt Darcy, Ken Moffat,
Manuel Canales Esparcia, and Nathan Coulson - CLFS Developers

Audience

There are many reasons why somebody would want to read this book. The principal reason is to install a Linux system from the source code. A question many people raise is, “why go through all the hassle of manually building a Linux system from scratch when you can just download and install an existing one?” That is a good question and is the impetus for this section of the book.

One important reason for the existence of CLFS is to help people understand how a Linux system works. Building an CLFS system helps demonstrate what makes Linux tick, and how things work together and depend on each other. One of the best things this learning experience provides is the ability to customize Linux to your own tastes and needs.

A key benefit of CLFS is that it allows users to have more control over their system without any reliance on a Linux implementation designed by someone else. With CLFS, you are in the driver's seat and dictate every aspect of the system, such as the directory layout and bootscript setup. You also dictate where, why, and how programs are installed.

Another benefit of CLFS is the ability to create a very compact Linux system. When installing a regular distribution, one is often forced to include several programs which are probably never used. These programs waste disk space or CPU cycles. It is not difficult to build an CLFS system of less than 100 megabytes (MB), which is substantially smaller than the majority of existing installations. Does this still sound like a lot of space? A few of us have been working on creating a very small embedded CLFS system. We successfully built a system that was specialized to run the Apache web server with approximately 8MB of disk space used. Further stripping could bring this down to 5 MB or less. Try that with a regular distribution! This is only one of the many benefits of designing your own Linux implementation.

We could compare Linux distributions to a hamburger purchased at a fast-food restaurant—you have no idea what might be in what you are eating. CLFS, on the other hand, does not give you a hamburger. Rather, CLFS provides the recipe to make the exact hamburger desired. This allows users to review the recipe, omit unwanted ingredients, and add your own ingredients to enhance the flavor of the burger. When you are satisfied with the recipe, move on to preparing it. It can be made to exact specifications—broil it, bake it, deep-fry it, or barbecue it.

Another analogy that we can use is that of comparing CLFS with a finished house. CLFS provides the skeletal plan of a house, but it is up to you to build it. CLFS maintains the freedom to adjust plans throughout the process, customizing it to the needs and preferences of the user.

Security is an additional advantage of a custom built Linux system. By compiling the entire system from source code, you are empowered to audit everything and apply all the security patches desired. It is no longer necessary to wait for somebody else to compile binary packages that fix a security hole. Unless you examine the patch and implement it yourself, you have no guarantee that the new binary package was built correctly and adequately fixes the problem.

The goal of Cross Linux From Scratch is to build a complete and usable foundation-level system. Readers who do not wish to build their own Linux system from scratch may not benefit from the information in this book. If you only want to know what happens while the computer boots, we recommend the “From Power Up To Bash Prompt” HOWTO located at http://axiom.anu.edu.au/~okeefe/p2b/ or on The Linux Documentation Project's (TLDP) website at http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html. The HOWTO builds a system which is similar to that of this book, but it focuses strictly on creating a system capable of booting to a BASH prompt. Consider your objective. If you wish to build a Linux system and learn along the way, this book is your best choice.

There are too many good reasons to build your own CLFS system to list them all here. This section is only the tip of the iceberg. As you continue in your CLFS experience, you will find the power that information and knowledge truly bring.

Prerequisites

Building a CLFS system is not a simple task. It requires a certain level of existing knowledge of Unix system administration in order to resolve problems, and correctly execute the commands listed. In particular, as an absolute minimum, the reader should already have the ability to use the command line (shell) to copy or move files and directories, list directory and file contents, and change the current directory. It is also expected that the reader has a reasonable knowledge of using and installing Linux software. A basic knowledge of the architectures being used in the Cross LFS process and the host operating systems in use is also required.

Because the CLFS book assumes at least this basic level of skill, the various CLFS support forums are unlikely to be able to provide you with much assistance. Your questions regarding such basic knowledge will likely go unanswered, or you will be referred to the CLFS essential pre-reading list.

Before building a CLFS system, we recommend reading the following HOWTOs:

Host System Requirements

You should be able to build a CLFS system from just about any Unix-type operating system. Your host system should have the following software with the minimum versions indicated. Also note that many distributions will place software headers into separate packages, often in the form of “[package-name]-devel” or “[package-name]-dev”. Be sure to install those if your distribution provides them.

  • Bash-2.05a

  • Binutils-2.12 (Versions greater than 2.21.1a are not recommended as they have not been tested)

  • Bison-1.875

  • Bzip2-1.0.2

  • Coreutils-5.0 (or Sh-Utils-2.0, Textutils-2.0, and Fileutils-4.1)

  • Diffutils-2.8

  • Findutils-4.1.20

  • Gawk-3.1.5

  • GCC 4.1 (Versions greater than 4.6.0 are not recommended as they have not been tested)

  • Glibc-2.2.5 (Versions greater than 2.13 are not recommended as they have not been tested)

  • Grep-2.5

  • Gzip-1.2.4

  • Linux 2.6.22

  • Make-3.80

  • Ncurses-5.3

  • Patch-2.5.4

  • Sed-3.0.2

  • Tar-1.14

  • Texinfo-4.7

To see whether your host system has all the appropriate versions, run the following:

cat > version-check.sh << "EOF"
#!/bin/bash

# Simple script to list version numbers of critical development tools

bash --version | head -n1 | cut -d" " -f2-4
echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-
bison --version | head -n1
bzip2 --version 2>&1 < /dev/null | head -n1 | cut -d" " -f1,6-
echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2
diff --version | head -n1
find --version | head -n1
gawk --version | head -n1
gcc --version | head -n1
$(find /lib{,64} -name libc.so.6) | head -n1 | cut -d" " -f1-7
grep --version | head -n1
gzip --version | head -n1
uname -s -r
make --version | head -n1
tic -V
patch --version | head -n1
sed --version | head -n1
tar --version | head -n1
makeinfo --version | head -n1

EOF

bash version-check.sh

Typography

To make things easier to follow, there are a few typographical conventions used throughout this book. This section contains some examples of the typographical format found throughout Cross-Compiled Linux From Scratch.

./configure --prefix=/usr

This form of text is designed to be typed exactly as seen unless otherwise noted in the surrounding text. It is also used in the explanation sections to identify which of the commands is being referenced.

install-info: unknown option '--dir-file=/mnt/clfs/usr/info/dir'

This form of text (fixed-width text) shows screen output, probably as the result of commands issued. This format is also used to show filenames, such as /etc/ld.so.conf.

Emphasis

This form of text is used for several purposes in the book. Its main purpose is to emphasize important points or items.

http://cross-lfs.org/

This format is used for hyperlinks, both within the CLFS community and to external pages. It includes HOWTOs, download locations, and websites.

cat > ${CLFS}/etc/group << "EOF"
root:x:0:
bin:x:1:
......
EOF

This format is used when creating configuration files. The first command tells the system to create the file ${CLFS}/etc/group from whatever is typed on the following lines until the sequence end of file (EOF) is encountered. Therefore, this entire section is generally typed as seen.

[REPLACED TEXT]

This format is used to encapsulate text that is not to be typed as seen or copied-and-pasted.

passwd(5)

This format is used to refer to a specific manual page (hereinafter referred to simply as a “man” page). The number inside parentheses indicates a specific section inside of man. For example, passwd has two man pages. Per CLFS installation instructions, those two man pages will be located at /usr/share/man/man1/passwd.1 and /usr/share/man/man5/passwd.5. Both man pages have different information in them. When the book uses passwd(5) it is specifically referring to /usr/share/man/man5/passwd.5. man passwd will print the first man page it finds that matches “passwd”, which will be /usr/share/man/man1/passwd.1. For this example, you will need to run man 5 passwd in order to read the specific page being referred to. It should be noted that most man pages do not have duplicate page names in different sections. Therefore, man [program name] is generally sufficient.

Structure

This book is divided into the following parts.

Part I - Introduction

Part I explains a few important notes on how to proceed with the Cross-LFS installation. This section also provides meta-information about the book.

Part II - Preparing for the Build

Part II describes how to prepare for the building process—making a partition and downloading the packages.

Part III - Make the Cross-Compile Tools

Part III shows you how to make a set of Cross-Compiler tools. These tools can run on your host system but allow you to build packages that will run on your target system.

Part IV - Building the Basic Tools

Part IV explains how to build a tool chain designed to operate on your target system. These are the tools that will allow you to build a working system on your target computer.

Part V - Building the CLFS System

Part V guides the reader through the building of the CLFS system—compiling and installing all the packages one by one, setting up the boot scripts, and installing the kernel. The resulting Linux system is the foundation on which other software can be built to expand the system as desired. At the end of this book, there is an easy to use reference listing all of the programs, libraries, and important files that have been installed.

Appendices

The appendices contain information that doesn't really fit anywhere else in the book. Appendix A contains definitions of acronyms and terms used in the book; Appendices B and C have information about package dependencies and the build order. Some architectures may have additional appendices for arch-specific issues.

Errata

The software used to create a CLFS system is constantly being updated and enhanced. Security warnings and bug fixes may become available after the CLFS book has been released. Some host systems may also have problems building CLFS. To check whether the package versions or instructions in this release of CLFS need any modifications to accommodate security vulnerabilities, other bug fixes, or host-specific issues, please visit http://trac.cross-lfs.org/wiki/errata/CLFS-1.2.0/ before proceeding with your build. You should note any changes shown and apply them to the relevant section of the book as you progress with building the CLFS system.

Part I. Introduction

Chapter 1. Introduction

1.1. Cross-LFS Acknowledgements

The CLFS team would like to acknowledge people who have assisted in making the book what it is today.

Our Leaders:

  • Ryan Oliver - Build Process Developer.

  • Jim Gifford - Lead Developer.

  • Joe Ciccone - Lead Developer.

  • Jeremy Utley - Release Manager 1.x Series.

Our CLFS Team:

  • Nathan Coulson - Bootscripts.

  • Matt Darcy - x86, X86_64, and Sparc builds.

  • Manuel Canales Esparcia - Book XML.

  • Karen McGuiness - Proofreader.

  • Jonathan Norman - x86, x86_64, PowerPC & UltraSPARC.

  • Jeremy Huntwork - PowerPC, x86, Sparc builds.

  • Justin Knierim - Website Architect.

  • Ken Moffat - PowerPC and X86_64 builds. Developer of Pure 64 Hint.

  • Alexander E. Patrakov - Udev/Hotplug Integration

  • Chris Staub - x86 builds. Leader of Quality Control.

  • Zack Winkles - Unstable book work.

Outside the Development Team

  • Jürg Billeter - Testing and assisting in the development of the Linux Headers Package

  • Richard Downing - Testing, typo, and content fixes.

  • Peter Ennis - Typo and content fixes.

  • Tony Morgan - Typo and content fixes.

The CLFS team would also like to acknowledge contributions of people from clfs-dev@lists.cross-lfs.org and associated mailing lists who have provided valuable technical and editorial corrections while testing the Cross-LFS book.

  • G. Moko - Text updates and Typos

  • Maxim Osipov - MIPS Testing.

  • Doug Ronne - Various x86_64 fixes.

  • William Zhou - Text updates and Typos

  • Theo Schneider - Testing of the Linux Headers Package

The Linux From Scratch Project

  • Gerard Beekmans <gerard AT linuxfromscratch D0T org> – Creator of Linux From Scratch, on which Cross-LFS is based

Thank you all for your support.

1.2. How to Build a CLFS System

The CLFS system will be built by using a previously installed Unix system or Linux distribution (such as Debian, Fedora, Mandriva, SUSE, or Ubuntu). This existing system (the host) will be used as a starting point to provide necessary programs, including a compiler, linker, and shell, to build the new system. Select the “development” option during the distribution installation to be able to access these tools.

As an alternative to installing an entire separate distribution onto your machine, you may wish to use a livecd. Most distributions provide a livecd, which provides an environment to which you can add the required tools onto, allowing you to successfully follow the instructions in this book. Remember that if you reboot the livecd you will need to reconfigure the host environment before continuing with your build.

Preparing a New Partition of this book describes how to create a new Linux native partition and file system, the place where the new CLFS system will be compiled and installed. Packages and Patches explains which packages and patches need to be downloaded to build a CLFS system and how to store them on the new file system. Final Preparations discusses the setup for an appropriate working environment. Please read Final Preparations carefully as it explains several important issues the developer should be aware of before beginning to work through Constructing Cross-Compile Tools and beyond.

Constructing Cross-Compile Tools explains the installation of cross-compile tools which will be built on the host but be able to compile programs that run on the target machine. These cross-compile tools will be used to create a temporary, minimal system that will be the basis for building the final CLFS system. Some of these packages are needed to resolve circular dependencies—for example, to compile a compiler, you need a compiler.

The process of building cross-compile tools first involves building and installing all the necessary tools to create a build system for the target machine. With these cross-compiled tools, we eliminate any dependencies on the toolchain from our host distro.

After we build our “Cross-Tools”, we start building a very minimal working system in /tools. This minimal system will be built using the cross-toolchain in /cross-tools.

In Installing Basic System Software, the full CLFS system is built. Depending on the system you are cross-compiling for, you will either boot the minimal temp-system on the target machine, or chroot into it.

The chroot (change root) program is used to enter a virtual environment and start a new shell whose root directory will be set to the CLFS partition. This is very similar to rebooting and instructing the kernel to mount the CLFS partition as the root partition. The major advantage is that “chrooting” allows the builder to continue using the host while CLFS is being built. While waiting for package compilation to complete, a user can switch to a different virtual console (VC) or X desktop and continue using the computer as normal.

Some systems cannot be built by chrooting so they must be booted instead. Generally, if you building for a different arch than the host system, you must reboot because the kernel will likely not support the target machine. Booting involves installing a few additional packages that are needed for bootup, installing bootscripts, and building a miminal kernel. We also describe some alternative booting methods in Section 7.20, “What to do next”

To finish the installation, the CLFS-Bootscripts are set up in Setting Up System Bootscripts, and the kernel and boot loader are set up in Making the CLFS System Bootable. The End contains information on furthering the CLFS experience beyond this book. After the steps in this book have been implemented, the computer will be ready to reboot into the new CLFS system.

This is the process in a nutshell. Detailed information on each step is discussed in the following chapters and package descriptions. Items that may seem complicated will be clarified, and everything will fall into place as the reader embarks on the CLFS adventure.

1.3. Master Changelog

This is version 1.2.0 of the Cross-Compiled Linux From Scratch book, dated February 10, 2012. If this book is more than six months old, a newer and better version is probably already available. To find out, please check one of the mirrors via http://trac.cross-lfs.org/.

Below is a list of detailed changes made since the previous release of the book.

Changelog Entries:

  • Febuary 9, 2012

    • [Jonathan] - Updated the minimum versions of GCC, Gawk and Make required.

  • Febuary 5, 2012

    • [Jonathan] - Added rdisc to IPutils make command.

    • [Jonathan] - Added missing agetty and blkid links in the boot method.

  • Febuary 4, 2012

    • [Jonathan] - Fixed permissions issue when running tests on Coreutils as the dummy user.

  • December 10, 2011

    • [Chris] - Removed --without-included-regex from final-system Grep installation, as the check for system regex now works properly.

    • [Chris] - Added --sysconfdir switch to Glib instructions.

    • [Chris] - Updated install program list for util-linux.

  • December 9, 2011

    • [Chris] - Updated download URL for PPL

    • [Chris] - Added package rationale page. Fixes ticket #32. Thanks to Joe and Jim for some suggested descriptions.

  • November 22, 2011

    • [Jonathan] - Fixed download URL for MPFR.

    • [Jonathan] - Updated homepage and download URLs for PPL.

  • November 20, 2011

    • [Jonathan] - Replaced Binutils 2.21 with 2.21.1a

  • September 03, 2011

    • [Jonathan] - Explained the configuration options used for GCC Static

    • [Jonathan] - Explained AS and AR configuration flags for Cross Binutils.

    • [Jonathan] - Added CLooG-PPL, PPL and GRUB2 to the dependancy page.

    • [Jonathan] - Added Glib to the dependancy page.

  • August 15, 2011

    • [Jonathan] - Added a note about using multiple make jobs with libee.

    • [Jonathan] - Fixed permissions propler for dummy user tests in coreutils.

    • [Jonathan] - Rewrote the section about using LiveCDs as hosts.

    • [Jonathan] - Updated the CSS so that large user commands now have a scroll bar instead of overflowing the grey boxed area.

    • [Jonathan] - Justified the main text.

    • [Jonathan] - Modified how the host requirments script looks for libc.

  • July 03, 2011

    • [Jonathan] - Removed redundant variable from pkg-config, thanks db m.

    • [Jonathan] - Added Glib to package list, thanks db m.

  • June 22, 2011

    • [Jonathan] - Removed reference to delete CLooG-PPL patch.

    • [Jonathan] - Fixed download link for Util-Linux and Patch.

    • [Jonathan] - Fixed Md5sums for various patches and packages.

  • June 18, 2011

    • [Jonathan] - Added missing Russian fix to multilib Shadow.

    • [Jonathan] - Fixed typo in the Kdb package.

  • June 14, 2011

    • [Jonathan] - Added missing link for blkid to boot section.

    • [Jonathan] - Fixed typo in passwd file in the boot section which prevented the user from logging in.

    • [Jonathan] - Updated minimum partition size from 2.5GB to 6GB.

    • [Jonathan] - Added missing links for agetty and login in boot section.

    • [Jonathan] - Updated Iproute2 patch to 2.6.38.

  • June 10, 2011

    • [Jonathan] - Updated Shadow download location.

  • May 30, 2011

    • [jciccone] - Updated the Kernel to 2.6.39.

  • May 26, 2011

    • [Jonathan] - Upgraded Shadow to 4.1.4.3.

    • [Jonathan] - Removed old grep patch.

  • May 19, 2011

    • [Jonathan] - No longer need to move liblmza.a on pure builds.

    • [Jonathan] - Added Glib, dependancy of new Pkg-config.

    • [Jonathan] - Updated Pkg-config to 0.26.

    • [Jonathan] - Updated Bison to 2.5.

    • [Jonathan] - Added M4 to cross-tools to avoid strstr issue with Bison 2.5.

    • [Jonathan] - Moved Kbd's setvtrgb from /usr/bin to /bin.

    • [Jonathan] - Updated package contents for Kdb.

    • [Jonathan] - Added es.po fix for Kdb 1.15.3.

    • [Jonathan] - Updated Kdb to 1.15.3.

    • [Jonathan] - Fixed issue with cross PPL using the host's GMP headers.

  • May 18, 2011

    • [Jonathan] - Updated Perl libc patch for 5.14.0.

    • [Jonathan] - Updated Coreutils uname patch for 8.12.

    • [Jonathan] - Updated Utils-Linux to 2.19.1.

    • [Jonathan] - Updated Udev to 168.

    • [Jonathan] - Updated Perl to 5.14.0.

    • [Jonathan] - Updated IPRoute2 to 2.6.38.

    • [Jonathan] - Updated Grep to 2.8.

    • [Jonathan] - Updated GMP to 5.0.2.

    • [Jonathan] - Updated File to 5.0.7.

    • [Jonathan] - Updated DHCPCD to 5.2.12.

    • [Jonathan] - Updated Coreutils to 8.12.

    • [Jonathan] - Added GCC 4.6.0 Branch Update Patch -1.

    • [Jonathan] - Updated Vim Branch Update to -2.

    • [Jonathan] - Updated Bash Branch Update to -2.

    • [Jonathan] - Updated Ncurses Branch Update to -2.

  • April 17, 2011

    • [jciccone] - Added libee, dependency of the new rsyslog.

    • [jciccone] - Added libestr, dependency of the new rsyslog.

    • [jciccone] - Updated Rsyslog to 6.1.7.

  • April 16, 2011

    • [jciccone] - Updated Udev to 167.

    • [jciccone] - Updated Less to 443.

    • [jciccone] - Updated Groff to 1.21.

    • [jciccone] - Updated Readline to 6.2.

    • [jciccone] - Updated DejaDNU to 1.5.

    • [jciccone] - Updated Util-linux to 2.19.

    • [jciccone] - Updated XZ Utils to 5.0.2.

    • [jciccone] - Updated Tar to 1.26.

    • [jciccone] - Updated M4 to 1.4.16.

    • [jciccone] - Updated Coreutils to 8.11.

    • [jciccone] - Updated Bash to 4.2.

    • [jciccone] - Updated EGLIBC to 2.13 r13356.

    • [jciccone] - Updated GCC to 4.6.0.

    • [jciccone] - Updated Binutils to 2.21.

    • [jciccone] - Updated ClooG-PPL to 0.15.11.

    • [jciccone] - Updated PPL to 0.11.2.

    • [jciccone] - Updated MPC to 0.9.

    • [jciccone] - Updated MPFR to 3.0.1.

    • [jciccone] - Updated NCurses to 5.9.

    • [jciccone] - Updated File to 5.06.

    • [jciccone] - Updated the Kernel to 2.6.38.3.

  • February 10, 2011

    • [jciccone] - Added patch to procps to fix an issue when the screen refresh rate isn't 60Hz.

  • January 30, 2011

    • [jciccone] - Add Pkg-config 0.25.

    • [jciccone] - Patch procps so that ps supports process control groups.

  • January 29, 2011

    • [jciccone] - Update Util-Linux to 2.19-rc3.

  • January 8, 2011

    • [jciccone] - Updated Sysvinit to 2.88dsf.

    • [jciccone] - Updated DHCPCD to 5.2.10.

    • [jciccone] - Updated the Multiarch Wrapper based on changes from DX-MON.

    • [jciccone] - Updated Bootscripts to 1.2-pre11.

    • [jciccone] - Updated Vim to 7.3.

    • [jciccone] - Updated Udev to 165.

    • [jciccone] - Updated Man to 1.6g.

    • [jciccone] - Updated IPutils to s20101006.

    • [jciccone] - Updated Autoconf to 2.68.

    • [jciccone] - Updated IPRoute2 to 2.6.37.

    • [jciccone] - Updated Libtool to 2.4.

    • [jciccone] - Updated E2fsprogs to 1.41.14.

    • [jciccone] - Updated Psmisc to 22.13.

    • [jciccone] - Updated the NCurses Branch Update Patch to -22.

    • [jciccone] - Updated Man-Pages to 3.32.

    • [jciccone] - Updated Linux to 2.6.37.

    • [jciccone] - Updated Perl to 5.12.2.

    • [jciccone] - Updated Expect to 5.45.

    • [jciccone] - Updated TCL to 8.5.9.

    • [jciccone] - Updated XZ to 5.0.0.

    • [jciccone] - Updated Tar to 1.25.

    • [jciccone] - Updated Patch to 2.6.1.

    • [jciccone] - Updated M4 to 1.4.15.

    • [jciccone] - Updated Coreutils to 8.9.

    • [jciccone] - Updated Bzip2 to 1.0.6.

    • [jciccone] - Updated Bison to 2.4.3.

    • [jciccone] - Updated the Bash Branch Update to -2.

    • [jciccone] - Updated CLooG-PPL to 0.15.10.

    • [jciccone] - Updated EGlibc 2.12 to r12509.

    • [jciccone] - Updated GCC to 4.5.2.

    • [Jonathan] - Corrected links for; expect, iana-etc and perl.

  • Augest 28, 2010

    • [jciccone] - Added a sed to procps that fixes an issue with Make 3.82.

    • [jciccone] - Added a note to GMP in the final system about building for a different cpu.

    • [Jonathan] - Corrected md5sums and some links, thanks to Code Monkey.

  • August 08, 2010

    • [jciccone] - Migrated the UID and GID Map from Sysroot.

    • [jciccone] - Removed Lilo and bin86 from x86_64-64 in favor of GRUB.

    • [jciccone] - Updated the GCC Pure64 Patch to -2. -1 has inconsistancies and errors.

    • [jciccone] - Add a patch to EGlibc to fix a compatibility issue with Make 3.82.

    • [jciccone] - Updated Make to 3.82.

    • [jciccone] - Updated GCC to 4.5.1.

    • [jciccone] - Updated GRUB to 1.98.

    • [jciccone] - Updated the Kernel to 2.6.35.

    • [jciccone] - Updated DHCPCD to 5.2.7.

    • [jciccone] - Install XZutils before Man. The configure script from man was finding unxz in /tools.

    • [jciccone] - Added set ruler to the default system vimrc. This can be a very useful option when doing text editing.

    • [jciccone] - Updated Udev to 160.

    • [jciccone] - Use pushd and popd when regenerating the info db after installing texinfo.

    • [jciccone] - Removed the Tar new compressors patch and added an updated man page patch.

    • [jciccone] - Updated Psmisc to 22.12.

    • [jciccone] - Updated Module-Init-Tools to 3.12.

    • [jciccone] - Updated Kbd to 1.15.2.

    • [jciccone] - Updated IPUtils to s20100418.

  • August 02, 2010

    • [jciccone] - Updated Automake to 1.11.1.

    • [jciccone] - Updated Autoconf to 2.67.

    • [jciccone] - Updated Readline to 6.1.

  • August 02, 2010

    • [jciccone] - Updated IPRoute2 to 2.6.34.

    • [jciccone] - Updated Libtool to 2.2.10.

  • August 01, 2010

    • [jciccone] - Updated E2fsprogs to 1.14.12.

    • [jciccone] - Updated the NCurses Branch Update patch to -21. Fixes through 2010-07-31 from upstream.

    • [jciccone] - Removed an unneeded sed from binutils in the final-system renaming getline to _getline.

    • [jciccone] - Fixed a compilation issue with GMP in the final for 32bit on multilib. It handles the ABI differences on its own now.

    • [jciccone] - Updated Man-Pages to 3.25.

    • [jciccone] - Updated Perl to 5.12.1.

  • July 29, 2010

    • [jciccone] - Updated Expect to 5.44.1.15.

  • July 26, 2010

    • [jciccone] - Updated Util-Linux-NG to 2.18.

    • [jciccone] - Updated Tar to 1.23.

    • [jciccone] - Updated Patch to 2.6.

    • [jciccone] - Updated M4 to 1.4.14.

    • [jciccone] - Updated Gzip to 1.4.

    • [jciccone] - Updated Grep to 2.6.3.

    • [jciccone] - Updated Gettext to 0.18.1.1.

    • [jciccone] - Updated Gawk to 3.1.8.

    • [jciccone] - Updated Diffutils to 3.0.

    • [jciccone] - Updated Coreutils to 8.5.

  • July 25, 2010

    • [jciccone] - Updated Bison to 2.4.2.

    • [jciccone] - Updated Bash to 4.1.

    • [jciccone] - Updated EGlibc to 2.12-20100725-r11059.

    • [jciccone] - Updated File to 5.04.

    • [jciccone] - Downgraded PPL to 0.10.2, GCC Incompatible.

    • [jciccone] - Added MPC 0.8.2 for GCC.

    • [jciccone] - Updated GCC to 4.5.0.

    • [jciccone] - Updated Cloog-PPL to 0.15.9.

    • [jciccone] - Updated PPL to 0.11pre24.

    • [jciccone] - Updated MPFR to 3.0.0.

    • [jciccone] - Updated GMP to 5.0.1.

    • [jciccone] - Updated the Kernel to 2.6.34.1.

    • [jciccone] - Updated Binutils to 2.20.1.

    • [jciccone] - Updated the bootscripts to 1.2-pre10.

    • [jciccone] - Updated the grub patches.

  • May 14, 2010

    • [Chris] - Added Installed Directories info for all applicable packages.

  • April 26, 2010

    • [kb0iic] - Updated zlib to 1.2.5.

  • April 11, 2010

    • [jciccone] - Updated the Kernel to 2.6.33.2.

  • Janurary 3, 2010

    • [Jonathan] - Added --disable-introspection to Udev Build.

  • Janurary 1, 2010

    • [jciccone] - Updated GCC to 4.4.2.

    • [jciccone] - Updated Binutils to 2.20.

    • [jciccone] - Also create the null and console nodes for udev in the boot section.

    • [jciccone] - Updated the Essential Symlinks in the Boot section to include sleep.

    • [jciccone] - Stopped Cloog-PPL from setting LD_LIBRARY_PATH to fix segfault issues.

    • [Jonathan] Updated Module-init-tools to 3.11.1.

    • [Jonathan] Updated Psmisc to 22.9.

    • [Jonathan] Updated Rsyslog to 4.4.2.

    • [Jonathan] Updated Dhcpcd to 5.1.4.

    • [Jonathan] Updated Udev to 149.

  • December 31, 2009

    • [Jonathan] - Updated Readline Patch to -2.

  • December 30, 2009

    • [Jonathan] - Updated Man-pages 3.23.

  • September 22, 2009

    • [Chris] - Updated home page for Patch.

  • September 13, 2009

    • [Chris] - Added switch to configure command for Grep to fix grep -i. Solution taken from LFS.

  • September 12, 2009

    • [Jim] - Updated Bash Patch to -7.

    • [Jim] - Updated Vim Patch to -21.

    • [Jim] - Updated Ncurses Patch to -20.

    • [Jim] - Updated GCC Patch to -4.

    • [Jim] - Added New GCC Fixes Patch.

  • September 11, 2009

    • [Jim] - Updated Coreutils 7.6.

  • September 7, 2009

    • [Jim] - Updated Util-Linux-NG to 2.16.1.

  • September 5, 2009

    • [zippo] - Updated Kernel tp 2.6.30.5 Tested Stable.

  • September 2, 2009

    • [Jim] - Updated Rsyslog to 4.4.1.

  • September 1, 2009

    • [Jim] - Updated XZ Utils to 4.999.9beta.

  • August 31, 2009

    • [Jim] - Fixed issue in Pure 64 util-linux-ng build. Thank you for the report Phillip Potter.

  • August 25, 2009

    • [Jim] - Updated Perl to 5.10.1.

    • [Jim] - Updated to Eglibc 2.10.1 Revision 8873. [BZ #10448] If NSS module contains no callback we must touch the status to avoid using stale value.

  • August 22, 2009

    • [Jim] - Updated E2fsprogs to 1.41.9.

  • August 21, 2009

    • [Jim] - Updated to Eglibc 2.10.1 Revision 8849.

    • [Jim] - Updated Coreutils to 7.5.

    • [Jim] - Updated Rsyslog to 4.4.0.

    • [Jim] - Updated Cloog-PPL to 0.15.7.

    • [Jim] - Updated Udev to 146.

  • August 17, 2009

    • [Chris] -Documented package/patch download list in book.

  • August 14, 2009

    • [Chris] - Changed Shadow instructions to remove unneeded configure options and update sed command for the encryption method.

  • August 12, 2009

    • [jim] - Added patch to Flex to ensure proper GCC 4.4.x code generation.

  • August 11, 2009

    • [jim] - Added Bison to Temp-System for Binutils in Final System.

    • [jim] - Added Flex to Temp-System for Binutils in Final System.

    • [jim] - Updated to Binutils 2.19.51. See http://sourceware.org/ml/binutils/2009-08/msg00163.html.

    • [Jim] - Updated DHCPCD to 5.0.7.

    • [Jim] - Updated Less to 436.

  • August 9, 2009

    • [Chris] - Udev now automatically installs HTML file on Udev rules. Removed obsolete instructions to manually install it, and updated references to its location.

  • July 31, 2009

    • [Chris] - Corrected instructions for running the Module-Init-Tools testsuite.

    • [Chris] - Updated installed program and library lists for a number of packages.

  • July 29, 2009

    • [Jim] - Updated to Eglibc 2.10.1-2.

  • July 28, 2009

    • [jim] - Updated Psmisc to 22.8.

  • July 27, 2009

    • [jim] - Updated Autoconf to 2.64.

    • [Jim] - Updated Man-Pages to 3.22.

    • [Jim] - Added a sed to binutils to prevent a testsuite failure.

    • [Jim] - Updated to Eglibc 2.10.1-1.

  • July 25, 2009

    • [jim] - fsck is now a part of Util-Linux-NG.

    • [jim] - Added --disable-libsigsegv to Gawk build. We don't want to add another library to the build.

    • [Jim] - Updated Shadow to 4.1.4.2.

  • July 23, 2009

    • [jim] - Updated GCC to 4.4.1.

    • [jim] - Updated Gawk to 3.1.7.

    • [Jim] - Updated Ncurses Branch Update Patch to -18.

    • [Jim] - Updated Vim Branch Update Patch to -19.

    • [Jim] - Updated to Linux 2.6.29.6.

    • [Jim] - Updated DHCPCD to 5.0.6.

  • July 21, 2009

    • [jim] - Updated Bash Update Patch to 6.

  • July 20, 2009

    • [jim] - Tweaked util-linux-ng build so e2fsprogs can find the libraries during configure.

  • July 18, 2009

    • [jciccone] - Use the libblkid and libuuid provided by Util-Linux-NG instead of E2fsprogs now.

    • [jciccone] - Updated Util-Linux-NG to 2.16.

    • [jciccone] - Updated E2fsprogs to 1.41.8.

    • [Jim] - Updated Udev to 145.

    • [Jim] - Updated Module Init Tools to 3.10.

  • July 14, 2009

    • [Chris] - Removed /bin/rm symlink is it is no longer needed for E2fsprogs testsuite.

  • July 13, 2009

    • [Chris] - Removed unnecessary posix patches for GCC and Binutils.

  • July 9, 2009

    • [Jim] - Updated Binutils Branch Update Patch to -5.

    • [Jim] - Updated GCC Branch Update Patch to -6.

  • July 8, 2009

    • [Chris] - Fixed permissions problem in Coreutils testsuite.

  • July 6, 2009

    • [jciccone] - Updated the pure64_specs patch to -2. It also modifies the multios directories now.

    • [jciccone] - Replaced the sed to correct the GMP/MPFR/CLooG/PPL search paths to one that just removes the search paths. In combination with removing the --with- arguments from configure this corrects the compiler/header and library mis-match problems.

    • [Chris] - Moved DHCPCD to Network section.

  • July 3, 2009

    • [Winkie] - Explicitly link MPFR against our GMP.

  • July 3, 2009

    • [Jim] - Updated Rsyslog to 4.2.0.

    • [Jim] - Updated Sed to 4.2.1.

  • July 1, 2009

    • [Winkie] - Clean up after the headers installation.

  • July 1, 2009

    • [Winkie] - Added myself to the credits.

  • July 1, 2009

    • [Winkie] - Add CLooG and PPL. GCC wants them.

  • June 22, 2009

    • [Jim] - Module Init Tools, no longer needs docbooktoman workaround. Also take advantage of using the dynamic zlib we have installed.

  • June 21, 2009

    • [Jim] - Updated Udev to 143.

  • June 20, 2009

    • [Chris] - Downgraded Linux back to 2.6.29.5, due to filesystem corruption in 2.6.30.

  • June 11, 2009

    • [winkie] - Don't build GMP with --enable-{cxx,mpbsd}.

    • [Jim] - Updated M4 to 1.4.13.

    • [Jim] - Updated to Linux 2.6.30.

  • June 10, 2009

    • [Jim] - Updated Util-linux-NG to 2.15.1.

    • [Jim] - Updated Udev to 142.

  • June 7, 2009

    • [Jim] - Updated GCC Branch Update Patch to -3.

    • [Jim] - Updated Findutils to 4.4.2.

    • [Jim] - Updated EGLIBC to prevent most testsuite failures.

  • June 5, 2009

    • [Jim] - Updated Binutils Branch Update Patch to -3.

    • [Jim] - Updated GCC Branch Update Patch to -2.

    • [Jim] - Updated Ncurses Branch Update Patch to -14.

    • [Jim] - Added Readline Branch Update Patch.

    • [Jim] - Updated TCL to 8.5.7.

    • [Jim] - Updated VIM Branch Update Patch to -15.

  • June 4, 2009

    • [Jim] - Added --without-debug to cross-tools ncurses build. Closing Ticket #208.

    • [Jim] - Updated Bootscripts to 1.2-pre8.

    • [Jim] - Updated File to 5.03.

    • [Jim] - Updated Less to 429.

    • [Jim] - Updated Procps to 3.2.8.

    • [Jim] - Updated Rsyslog to 3.22.0.

    • [Jim] - Updated Shadow to 4.1.4.1.

    • [Jim] - Updated Zlib FPIC patch to -2.

    • [Jim] - Updated to Linux 2.6.29.4.

  • June 3, 2009

    • [Jim] - Removed Glibc. Moved to Eglibc 2.10.1.

    • [Jim] - Updated GCC to 4.4.0.

    • [Jim] - Updated GMP to 4.3.1.

    • [Jim] - Updated E2fsprogs to 1.41.6.

    • [Jim] - Updated Module Init Tools to 3.9.

    • [Jim] - Updated Coreutils to 7.4.

    • [Jim] - Updated Sed to 4.2.

    • [Jim] - Updated Findutils to 4.4.1.

    • [Jim] - Updated Man-Pages to 3.21.

    • [Jim] - Updated DHCPCD to 5.0.4.

    • [Jim] - Updated Automake to 1.11.

  • June 2, 2009

    • [Chris] - Various text and indentations fixes.

    • [Chris] - Removed unneeded chmod command from E2fsprogs instructions in boot section.

  • May 24, 2009

    • [Jim] - Updated Bash Update Patch to 5.

  • May 23, 2009

    • [Jim] - Updated E2fsprogs to 1.41.5.

  • April 24, 2009

    • [Jim] - Added --with-manpage-format=normal to ncurses configure line. By Default ncurses compresses man-pages.

    • [Jim] - Updated Bootscripts to 1.2-pre7.

    • [Jim] - Updated Udev to 141. Due to CVE-2009-1185 and CVE-2009-1186.

  • April 16, 2009

    • [Chris] - Added command explanations to Linux-Headers pages.

  • April 15, 2009

    • [Jim] - Added MPFR Branch Update Patch to -2.

  • April 9, 2009

    • [Jim] - Updated Bash Branch Update Patch to -4.

  • April 04, 2009

    • [Jonathan] - Removed "--enable-64-bit-bfd" from 32bit builds.

  • March 25, 2009

    • [Jim] - Updated to IPRoute2 2.6.29-1.

  • March 23, 2009

    • [Jim] - Updated VIM Branch Update Patch to -12.

    • [Jim] - Updated GCC Branch Update Patch to -5

    • [Jim] - Updated to Linux 2.6.29.

  • March 22, 2009

    • [Jim] - Updated Ncurses Branch Update Patch to -11.

  • March 14, 2009

    • [Jim] - Updated to Linux 2.6.28.8.

    • [Jim] - UUCP group no longer needed by udev.

  • March 14, 2009

    • [Jim] - Updated Udev to 140.

  • March 12, 2009

    • [Jim] - Updated GCC Branch Update Patch to -4.

    • [Jim] - Updated VIM Branch Update Patch to -11.

  • March 9, 2009

    • [Jim] - Updated Bash Branch Update Patch to -3.

    • [Jim] - Added Binutils Branch Update Patch.

  • March 5, 2009

    • [Jim] - Updated TAR to 1.22.

  • March 2, 2009

    • [Jim] - Added Patches to File, Man, Tar, and Texinfo to support XZ Utils.

    • [Jim] - Updated Bash Branch Update Patch to -2.

    • [jciccone] - Restructured the XML for the networking section. The new order should help it flow better. Also moved dhcpcd into the final system.

  • March 1, 2009

    • [Jim] - Updated Ncurses Branch Update Patch to -10.

    • [Jim] - Updated Vim Branch Update Patch to -10.

    • [Jim] - Updated GCC Branch Update Patch to -3.

    • [Jim] - Updated File Fixes Patch to -2.

    • [Jim] - Fixed Diffutils Man-Pages.

  • February 28, 2009

    • [Jim] - Updated MPFR to 2.4.1.

    • [Jim] - Added Bash 4.0 Branch Update Patch.

  • February 27, 2009

    • [Jonathan] - Updated link for KBD.

    • [Jim] - Updated Udev to 139.

    • [Jim] - Updated Grub Instructions. Included Patch for ext4. Thank you Zack!!!.

  • February 26, 2009

    • [Jim] - Updated DHCPCD to 4.0.12.

  • February 25, 2009

    • [Chris] - Added mkswap to list of programs to build for Util-linux-ng in chroot, as E2fsprogs' testsuite uses it.

  • February 22, 2009

    • [Jim] - Updated Ncurses Branch Update Patch to -9.

    • [Jim] - Updated Vim Branch Update Patch to -9.

    • [Jim] - Updated GCC Branch Update Patch to -2.

  • February 21, 2009

    • [Jim] - LZMA Utils is now XZ Utils. Upgraded package to 4.999.8beta.

    • [jciccone] - Updated Coreutils to 7.1.

  • February 20, 2009

    • [Jim] - Updated Bash to 4.0.

    • [Jim] - Updated Readline to 6.0.

    • [Jim] - Updated to Linux 2.6.28.7.

    • [Jim] - Updated Man-Pages to 3.19.

    • [Jim] - Updated DHCPCD to 4.0.11.

  • February 19, 2009

    • [Jim] - Updated Udev to 138.

    • [Jim] - Updated to Linux 2.6.28.6.

  • February 18, 2009

    • [Jim] - Updated Bzip2 Multilib 64bit install. On some occasions the make command during an install will rebuild sources. Lets make sure it uses our specified options.

    • [Jim] - Added Missing ManPages Patch to IPutils.

    • [Jim] - IPutils Patches Update - Adds to more useful utilities.

  • February 17, 2009

    • [Jim] - Fix File UTF-8 Issues.

    • [Jim] - Readded Missing ManPages Patch to Module-Init-Tools.

  • February 16, 2009

    • [Jim] - Updated Ncurses Branch Update Patch to -8.

    • [Jim] - Updated Vim Branch Update Patch to -8.

  • February 12, 2009

    • [Jim] - Updated to Linux 2.6.28.5.

  • February 10, 2009

    • [Jim] - Updated Grep to 2.5.4.

    • [Jim] - Updated Util-Linux-NG to 2.14.2.

    • [Jim] - Updated Man-Pages to 3.18.

  • February 9, 2009

    • [Jim] - Updated Rsyslog to 3.20.4.

  • February 8, 2009

    • [Chris] - Reordered pages in the bootscript section so they make more sense, and split the Bash Shell files page into 2 pages.

  • February 7, 2009

    • [Jim] - Updated Linux to 2.6.28.4.

    • [Jim] - Updated Ncurses Branch Update Patch to -7.

    • [Jim] - Updated Vim Branch Update Patch to -7.

    • [Jim] - Updated IPRoute2 libdir patch. The TC directory is now just text files doesn't need to be in /usr/libx/tc, we now place it in /usr/share/tc..

  • February 5, 2009

    • [Chris] - Added LZMA and IPutils dependency information and updated several other packages' dependencies.

    • [Jim] - Updated File to 5.00.

    • [Jim] - Updated Module Init Tools to 3.6.

  • February 4, 2009

    • [Jim] - Updated DHCPCD to 4.0.10.

  • February 3, 2009

    • [Jim] - Updated DHCPCD to 4.0.9.

    • [Jim] - Updated DHCPCD Config Information.

    • [Jim] - Updated Binutils to 2.19.1.

    • [Jim] - Updated Bootscripts to 1.2-pre6.

    • [Jim] - Updated Bootscripts to 1.2-pre5.

    • [Jim] - Updated to Linux 2.6.28.3.

    • [Jim] - Updated Vim Branch Update Patch to -6.

    • [Jim] - Added GCC Branch Update Patch to -1.

  • January 31, 2009

    • [Jim] - Updated Bootscripts to 1.2-pre4.

    • [Jim] - Removed Sysklogd.

    • [Jim] - Added Rsyslog 3.20.3.

  • January 30, 2009

    • [Jim] - Updated IPRoute2 to 2.6.28.

  • January 28, 2009

    • [Jim] - Updated MPFR to 2.4.0.

    • [Jim] - Updated E2fsprogs to 1.41.4.

  • January 27, 2009

    • [Jim] - Updated Bootscripts to 1.2-pre3.

    • [Jim] - Updated Ncurses Branch Update Patch to -6.

    • [Jim] - Updated DHCPCD to 4.0.8.

    • [Jim] - Updated TCL to 8.5.6.

  • January 25, 2009

    • [Jim] - Updated GCC to 4.3.3.

    • [Jim] - Updated to Linux 2.6.28.2.

  • January 24, 2009

    • [Jim] - Updated Udev to 137. Fixed nagging uucp group issue for udev.

  • January 22, 2009

    • [Jim] - Updated Binutils Branch Update Patch to -4.

  • January 21, 2009

    • [Chris] - Added command to make Perl use system-installed Zlib. Fixes ticket #201.

    • [Jim] - Changed absolute-links from Bzip2 install to relative-links.

  • January 20, 2009

    • [Jim] - Fixed -Dvendorprefix=/usr from Ticket 201.

  • January 19, 2009

    • [Jim] - Cleaned up Temp-Perl and fixed new issue.

  • January 18, 2009

    • [Jim] - Updated Linux to 2.6.28.1.

    • [Jim] - Updated Man-Pages to 3.17.

    • [Jim] - Updated Ncurses Branch Update Patch to -5.

    • [Jim] - Updated Vim Branch Update Patch to -5.

  • January 17, 2009

    • [jciccone] - Updated Glibc to 2.9.

    • [Jim] - Toolchain Updates from Ryan.

  • January 16, 2009

    • [Jonathan] - Added Linux 2.6.22 as a host requirment because coreutils requires it.

    • [Jim] - Rearranged dhcp to static, to new section Network Coniguration. Makes the flow look a lot smoother.

  • January 15, 2009

    • [Chris] - Updated lists of installed programs for several packages.

    • [Jim] - Adding the new foundation for Static or DHCP Networking.

    • [Jim] - Added DHCPCD 4.0.7 to book.

    • [Jim] - Replaced Inetutils 1.6 with IP Utils 20071127. Fixes numerous compile issues of common network utilities on all architectures.

  • January 14, 2009

    • [Jim] - Community Request full-filled. Vim added to temp-system.

  • January 12, 2009

    • [Jim] - Fixed Ncurses as stated in Ticket #200.

    • [Jim] - Fixed E2fsprogs as stated in Ticket #197.

    • [Jim] - Fixed LZMA from Ticket #198. LZMA utilizes C++ library. By standards it stays in /usr/lib. So we have modified our build to place LZMA in /usr/bin and not /bin.

    • [Jim] - Reverted Changed Target Triple to clfs from unknown. Some tools are hardcoded to unknown.

  • January 11, 2009

    • [Jonathan] - Fixed mistaken from when STANDARD_STARTFILE_PREFIX was added.

    • [Jim] - Final phase of Ncurses fixes. Create backwards compatible symlinks.

    • [Jim] - Fix for linking libreadline in 64 bit Inetutils.

  • January 10, 2009

    • [Jim] - Changed Target Triple to clfs from unknown.

  • January 09, 2009

    • [Jim] - From Ryan - Don't USE HOST distro's limits.h during gcc static build.

    • [Jim] - From Ryan - Simpler STANDARD_STARTFILE_PREFIX Change, common to all architectures.

    • [Jim] - Updated Groff to 1.20.1.

  • January 08, 2009

    • [Jim] - Added Internationalization Patch to Coreutils.

    • [Jim] - Added Internationalization Patch to Diffutils.

    • [Jim] - Added Internationalization Patch to Grep.

    • [Jim] - Added New Patches to Bash. Fixes Issues known with CLFS builds.

    • [Jim] - Updated Binutils Branch Update Patch to -3.

    • [Jim] - Updated Ncurses Branch Update Patch to -4.

    • [Jim] - Updated GCC Branch Update Patch to -4.

    • [Jim] - Updated VIM Branch Update Patch to -4.

    • [Jim] - Diffutils wants ed as editor. We change it to vim, since ed is not available.

    • [Jim] - Added Internationalization Patch to Man.

    • [Jim] - Have Ncurses create /usr/include/ncurses, some widec builds get confused on what ncurses to use.

  • January 07, 2009

    • [Chris] - Removed LFS Get Counted page.

    • [Jim] - Have Ncurses Widec create /usr/include/ncursesw.

    • [Jim] - Added --enable-multibyte to groff.

    • [Jim] - Moved location of dumpkeys to /bin will be needed for a change coming up in the bootscripts.

    • [Jim] - Added arch to util-linux-ng build. Also fixed descriptions of configure paramters.

    • [Jim] - Cleanup Readline Build. Changed the way to link ncurses.

    • [Jim] - Applied Patch to Sysvinit. Fixed Various Issues.

    • [Jim] - Updated Udev to 136.

    • [Jim] - Added Note about alternative bootloaders to x86.

  • January 06, 2009

    • [Chris] - Removed redundant Acknowledgments page in Appendices.

    • [Jim] - Corrected Build Issue with Groff 1.20.

    • [Jim] - Modified build of KBD to make utf-8 friendly.

  • January 05, 2009

    • [Jim] - Added MPFR Branch Update Patch.

    • [Jim] - Updated Ncurses Patch to -3.

    • [Jim] - Added Patch to File Temp-System. File magic.mgc under certain circumstances doesn't get created properly.

    • [Jim] - Updated Groff to 1.20.

  • January 04, 2009

    • [Jim] - Changed the commands for Clean Toolchain Updates. Using proper LDFLAGS instead of the compiler string for library command.

    • [Jim] - Added patch that will fix a build issue with Kbd. The patch is for the linux-headers in final-system.

    • [Jim] - Added patch for TAR. Could cause an issue when extracting tar with bzip2 archives.

  • January 03, 2009

    • [Jim] - Added GMP Branch Update Patch.

    • [Jim] - Added GMP and MPFR to Cross-Tools.

  • January 02, 2009

    • [jciccone] - Added another NCurses build that builds the widec libraries.

  • December 30, 2008

    • [Jim] - Updated Vim Patch to -3.

    • [Jim] - Updated Binutils Patch to -2.

  • December 29, 2008

    • [Chris] - Removed unneeded --sysconfdir switch from Inetutils instructions.

    • [Chris] - Updated Gettext's list of installed programs and libraries.

    • [Jim] - Updated Inetutils to 1.6.

    • [Jim] - Updated Linux to 2.6.28.

    • [Jim] - Updated Bash Patch to -9.

    • [Jim] - Updated Readline Patch to -5.

    • [Jim] - Updated Ncurses Patch to -2.

  • December 28, 2008

    • [Jim] - Updated Tar to 1.21.

  • December 27, 2008

    • [Chris] - Corrections to LZMA instructions - the existing instructions left broken symlinks (already created by LZMA) in /usr/bin, and LZMA documentation refers to "lzcat" not "lzmacat".

  • December 25, 2008

    • [Chris] - Removed --disable-evms from e2fsprogs configure, as that option is no longer recognized. Taken from LFS.

    • [Chris] - Addition to config.h no longer need for current Gawk version. Reported on LFS lists by Erik-Jan.

  • December 22, 2008

    • [Jonathan] - Added LMZA-Utils to package list.

    • [Chris] - Removed several redundant, identical files from XML source.

    • [Chris] - Removed the mention of the udev FAQ. The FAQ has been removed from both the udev source and the website.

  • December 21, 2008

    • [jciccone] - Updated NCurses to 5.7

    • [jciccone] - Add tic from ncurses from cross-tools. This fixes a problem where ncurses may hang while cross-compiling if there is a version mismatch with host systems tic.

    • [jciccone] - Add --host=${CLFS_TARGET32} to the 32bit MPFR build on multilib. This fixed the almost complete testsuite failure.

    • [jciccone] - Command fixes on a few of Multilib Pages related to the changes in todays previous ChangeLog entries.

    • [Jim] - Updated Clean Toolchain Build - GMP.

    • [Jim] - Updated Clean Toolchain Build - MPFR.

    • [Jim] - Updated Clean Toolchain Build - Binutils.

    • [Jim] - Updated Clean Toolchain Build - GCC.

    • [Jim] - Clean up to multilib bootscripts install in Boot.

    • [Jim] - Updated Automake to 1.10.2.

    • [Jim] - Updated Binutils to 2.19.

    • [Jim] - Updated Bison to 2.4.1.

    • [Jim] - Updated E2fsprogs to 1.41.3.

    • [Jim] - Updated GMP to 4.2.4.

    • [Jim] - Updated Iana-ETC to 2.30.

    • [Jim] - Updated Kbd to 1.15.

    • [Jim] - Updated Linux to 2.6.27.10.

    • [Jim] - Updated M4 to 1.4.12.

    • [Jim] - Updated Man-Pages to 3.15.

    • [Jim] - Updated Module Init Tools to 3.5.

    • [Jim] - Updated Shadow to 4.1.2.2.

    • [Jim] - Updated TCL to 8.5.5.

    • [Jim] - Updated Texinfo to 4.13a.

    • [Jim] - Updated Udev to 135.

    • [Jim] - Updated Vim Patch to -2.

    • [Jim] - Updated Home Page for Iana-ETC.

    • [Jim] - Updated Download Location for Iana-ETC.

    • [Jim] - Removed Patch for Module Init Tools 3.5.

    • [Jim] - Removed Tree - No Longer Required.

    • [Jim] - Added GCC Branch Update Patch.

    • [Jim] - Added LZMA-Utils 4.32.7.

  • December 16, 2008

    • [Chris] - Removed obsolete DESTDIR parameter from E2fsprogs in boot section.

  • December 15, 2008

    • [Chris] - Corrected command explanations on IPRoute2 page.

    • [Chris] - Removed command to modify gccbug script from GCC final-system instructions. This command is obsolete as mktemp is now installed by Coreutils.

  • December 6, 2008

    • [Jonathan] - Fixed broken link for ncurses.

  • December 3, 2008

    • [Jonathan] - Updated GCC md5sum.

  • November 12, 2008

    • [Jonathan] - Fixed location for the bootscripts and updated it to version 1.2-pre2.

  • November 2, 2008

    • [jciccone] - Fixed the configure command for module-init-tools so /share goes to /usr/share where it should be.

  • October 25, 2008

    • [Chris] - Removed arch and su from Coreutil's "--enable-no-install-program" list - neither is installed by default anyway.

    • [Chris] - Removed redundant SBINDIR parameter from IPRoute2 instructions.

  • October 22, 2008

    • [Chris] - Removed additional text that is no longer needed since the futimens references in Coreutils are not changed.

  • October 19, 2008

    • [Chris] - removed the command to change the "futimens" reference in Coreutils as it's no longer needed, and updated text referring to the "Linux-Headers" package.

  • October 2, 2008

    • [jciccone] - Wrap Libtool by the Multiarch wrapper making it more multilib compatible.

  • September 21, 2008

    • [jciccone] - Fix the library search path for libtool on multilib systems.

  • September 20, 2008

    • [jciccone] - Updated Glibc to 2.8.

  • September 14, 2008

    • [jciccone] - Updated Bootscripts to 1.2-pre1.

    • [jciccone] - Use a Common inittab across all architectures.

    • [jciccone] - Formatting fixes on multiple pages.

    • [jciccone] - Add -Duseshrplib to the perl configure command. This causes perl to build a shared libperl.

    • [jciccone] - Applied fixes to Expect to make it compatible with TCL 8.5.

    • [jciccone] - Updated Linux to 2.6.26.5.

    • [jciccone] - Updated Udev to 128.

    • [jciccone] - Updated MPFR to 2.3.2.

    • [jciccone] - Updated Vim to 7.2.

    • [jciccone] - Updated Texinfo to 4.12.

    • [jciccone] - Updated Module-Init-Tools to 3.4.1.

    • [jciccone] - Updated Libtool to 2.2.6a.

    • [jciccone] - Updated IPRoute2 to 2.6.26.

    • [jciccone] - Updated Shadow to 4.1.2.1.

    • [jciccone] - Updated Man to 1.6f.

    • [jciccone] - Updated Man-Pages to 3.09.

    • [jciccone] - Updated Findutils to 4.4.0.

    • [jciccone] - Updated Autoconf to 2.63.

    • [jciccone] - Updated Bzip2 to 1.0.5.

    • [jciccone] - Updated Kbd to 1.14.

    • [jciccone] - Updated M4 to 1.4.11.

    • [jciccone] - Updated E2fsprogs to 1.41.1.

    • [jciccone] - Updated TCL to 8.5.4.

    • [jciccone] - Updated Util-Linux-NG to 2.14.1.

    • [jciccone] - Updated Tree to 1.5.2.1.

    • [jciccone] - Checked and Updated Download Locations.

  • September 7, 2008

    • [jciccone] - A lot of text changes.

  • August 31, 2008

    • [jciccone] - Updated GCC to 4.3.2.

    • [jciccone] - Updated File to 4.26.

  • August 30, 2008

    • [jciccone] - Updated File to 4.25.

    • [jciccone] - Updated Perl to 5.10.0.

    • [jciccone] - Drop the Mktemp package in favor for the version in Coreutils.

    • [jciccone] - Updated Coreutils to 6.12.

  • August 26, 2008

    • [jciccone] - Added Texinfo to the list of host system requirements.

  • August 26, 2008

    • [jciccone] - Added M4 to the temp system for GMP.

  • August 25, 2008

    • [jciccone] - Added a patch to glibc that causes it to look in GCC's include-fixed directory.

  • August 24, 2008

    • [jciccone] - Updated to GCC 4.3.1

    • [jciccone] - Add MPFR 2.5.1, dependency of GCC 4.3

    • [jciccone] - Added GMP 4.2.3, dependency of MPFR and GCC 4.3

    • [jciccone] - Update the paths to ld.so when configuring Glibc for each arch.

  • July 13, 2008

    • [jciccone] - Add a page right before Entering the Chroot Enviornment. This page covers the problem of building a 32bit system from a 64bit host or building a older 32bit system from another newer 32bit system.

  • July 12, 2008

    • [jciccone] - Drop the minix tools from the chroot Util-Linux-NG build.

  • July 11, 2008

    • [ken] - Add a patch to address known perl vulnerabilities.

  • July 7, 2008

    • [jciccone] - Change the command that creates the clfs user to not include -k /dev/null. Newer versions of Shadow (4.1.2) apparently any argument passed to -k to be a directory.

  • July 7, 2008

    • [jciccone] - Fix a omission in the Udev lib64 patch. Thanks to AcidPoison for catching this and reporting it in Trac.

  • July 6, 2008

    • [jciccone] - Now that shadow doesn't provide any libraries we only need to build it once on multilib.

  • June 28, 2008

    • [jciccone] - Downgraded the Vim Branch Update patch back to -2 from -3.

    • [jciccone] - Remove the commands that relocate the Shadow libraries as they are not provided in newer versions of shadow. Also only build 64bit, since there are no libraries anymore.

    • [jciccone] - Link /tools/bin/echo to /bin/echo foe one of the Glibc tests.

    • [jciccone] - Updated GCC to 4.2.4.

  • June 28, 2008

    • [jciccone] - Fixed the Glibc i586 chk patch entity.

    • [jciccone] - Updated Tar to 1.20.

    • [jciccone] - Updated Udev to 124.

    • [jciccone] - Updated the Ncurses Branch Update patch to -3/

    • [jciccone] - Add a config.cache entry to Coreutils so that the df program will be built

    • [jciccone] - Fixed descriptions for lib64= in procps on the various multilib pages.

    • [jciccone] - Corrected the entities for the lilo x86_64 cross compile patch.

    • [jciccone] - Added a patch to perl so it wont include asm/page.h.

    • [jciccone] - Updated the Vim Branch Update patch to -3.

    • [jciccone] - Updated Shadow to 4.1.2.

    • [jciccone] - Fixed GCC Posix patch MD5SUM.

    • [jciccone] - Fixed Inetutils MD5SUM.

    • [jciccone] - Updated Util-Linux-NG to 2.14.

    • [jciccone] - Updated the Util-Linux-NG homepage link.

    • [jciccone] - Updated Man-Pages to 3.01.

    • [jciccone] - Updated the Bash Fixes patch to -8.

  • June 17, 2008

    • [Ken] - Fix all known kernel vulnerabilities by upgrading to 2.6.24.7 plus a patch extracted from debian for the more recent fixes.

  • June 7, 2008

    • [Chris] - Updated dependency info for several packages.

  • Date

    • [jciccone] - Updated Flex to 2.5.35. This update fixes numerous compilation issues against 2.5.34.

  • February 12, 2008

    • [ken] - Added cs_CZ.UTF-8 locale for grep's fmbtest.sh test.

  • Frburary 3, 2008

    • [jciccone] - Updated the Kernel to 2.6.24.

  • Feburary 2, 2008

    • [jciccone] - Updated Man-Pages to 2.77.

    • [jciccone] - Updated Libtool to 1.5.26.

    • [jciccone] - Updated Findutils to 4.2.32.

    • [jciccone] - Updated Automake to 1.10.1.

    • [jciccone] - Updated the bootscripts to 1.1-pre10. These use udevadm instead of the individual udevcontrol, udevtrigger, and udevsettle programs. Which are currently symlinked to udevadm.

  • January 20, 2008

    • [Bigdissaved] - Changed the minimum ${CLFS} size from 1.5Gb to 2.5Gb. Thanks to Copper for seeing this

  • January 19, 2008

    • [jciccone] - Update the Kernel to 2.6.23.14.

  • January 19, 2008

    • [jciccone] - Updated Man-Pages to 2.76.

    • [jciccone] - Updated Util-Linux-NG to 2.13.1.

    • [jciccone] - Updated Less to 418.

  • January 14, 2008

    • [ken] - Add patch for man pages in module-init-tools.

  • January 13, 2008

    • [jciccone] - Updated the Kernel to 2.6.23.13.

  • January 6, 2008

    • [jciccone] - Updated File to 4.23.

    • [ken] - Updated Glibc branch update patch to 1A, so that ppc and ppc64 build again.

  • January 2, 2008

    • [jciccone] - Updated E2fsprogs to 1.40.4.

  • Janurary 1, 2007

    • [jciccone] - Updated Shadow to 4.1.0.

  • December 29, 2007

    • [ken] - Make the current Module-Init-Tools testsuite run, update the instructions because distclean is no longer useful, and comment on the DOCBOOKTOMAN parameter.

  • December 23, 2007

    • [jciccone] - Added a config.cache entry to Gettext to resolve some errors.

  • December 19, 2007

    • [jciccone] - Updated Util-Linux-NG to 2.13.0.1.

    • [jciccone] - Updated Various Branch Update Patches.

    • [jciccone] - Updated Udev to 118.

    • [jciccone] - Updated Psmisc to 22.6.

    • [jciccone] - Updated Module Init Tools to 3.4.

    • [jciccone] - Updated Man-Pages to 2.73.

    • [jciccone] - Updated the Kernel to 2.6.23.12.

    • [jciccone] - Updated Less to 416.

  • December 16, 2007

    • [jciccone] - Updated Gettext to 0.17.

    • [jciccone] - Updated e2fsprogs to 1.40.3.

    • [jciccone] - Updated Flex to 2.5.34.

    • [jciccone] - Updated the Kernel to 2.6.23.11.

    • [jciccone] - Updated the bootscripts to 1.1-pre9.

  • December 10, 2007

    • [jciccone] - Added --disable-makeinstall-chown to util-linux-ng in the boot section.

  • November 27, 2007

    • [jciccone] - Updated the bootscripts to 1.1-pre8.

  • October 30, 2007

    • [jim] - Updated to TCL 8.4.16.

    • [jim] - Updated to Man-Pages 2.67.

    • [jim] - Replaced Shadow Patch with better patch.

  • October 29, 2007

    • [jim] - Updated Binutils 2.18 Branch Update Patch.

    • [jim] - Updated Vim 7.1 Branch Update Patch.

    • [jim] - Added Ncurses 5.6 Branch Update Patch.

    • [jim] - Updated to Gawk 3.1.6.

    • [jim] - Updated to Shadow 4.0.18.2.

    • [jim] - Added Updated Useradd Fix Patch to Shadow 4.0.18.2.

  • October 26, 2007

    • [jim] - Added Binutils 2.18 Branch Update Patch.

    • [jim] - Added GCC 4.2.2 Branch Update Patch.

    • [jim] - Added Glibc 2.7 Branch Update Patch.

  • October 25, 2007

    • [jim] - Updated the bootscripts to 1.1-pre7.

    • [jim] - Updated to Glibc 2.7.

    • [jim] - Updated Bootscripts build to make sure the udev devices get created correctly in boot section.

  • October 16, 2007

    • [jim] - Updated the bootscripts to 1.1-pre6. Combined with cblfs bootscripts, all bootscripts in one package.

    • [jim] - Updated to Linux 2.6.23.1.

    • [jim] - Removed Linux-Headers Package.

    • [jim] - Updated to GCC 4.2.2.

    • [jim] - Updated to Tar 1.19.

    • [jim] - Updated to Texinfo 4.11.

    • [jim] - Updated to Less 409.

    • [jim] - Updated to Udev 116.

    • [jim] - Added patch to correct the detction of texinfo in binutils.

    • [jim] - Updated to IPRoute2 2.6.23.

  • October 13, 2007

    • [jciccone] - Updated the bootscripts to 1.1-pre5. The Makefile now creates the static nodes that the udev Makefile used to.

    • [jim] - Updated the boot section Util-Linux-NG Build. Fixes issues where files were missing during bootup and the ability to login.

  • September 24, 2007

    • [Chris] - More dependency updates for several packages.

  • September 23, 2007

    • [Chris] - Updates to dependency info for several packages.

  • September 12, 2007

    • [Chris] - Added more new programs to Util-Linux-Ng installed programs list.

  • September 11, 2007

    • [Chris] - Updated list of installed programs for Util-Linux-ng.

    • [jim] - Updated CLFS Bootscripts to 1.1-pre4.

  • September 10, 2007

    • [Chris] - Added needed mkdir command to IPRoute2 instructions.

    • [Chris] - Fixed descriptive text in testsuite-tools introduction page. Reported by gomoko (ticket #118).

  • September 09, 2007

    • [jciccone] - Build a PIC libfl.a with Flex.

    • [jim] - Updated Util-Linux-ng in Boot Section, to cross-compile.

  • September 03, 2007

    • [jim] - Updated Udev to 115. This change also removed udev-cross-lfs package since our rules are the same as base ones installed.

    • [jim] - Updated Grep to 2.5.3.

    • [jim] - Updated Man-Pages to 2.64.

    • [jim] - Updated TCL to 8.4.15.

    • [jim] - Updated to Linux 2.6.22.6.

    • [jim] - Updated to Linux Headers 2.6.22.6-09032007.

    • [jim] - Updated Less to 406.

    • [jim] - Updated Sysklogd to 1.5.

    • [jim] - Updated Kbd to 1.13.

    • [jim] - Updated IPRoute2 to 2.6.22-070710.

    • [jim] - Updated Shadow Patch for more fixes. Man Page Typos, buffer overflows, useradd -G fixes, better name support, and the previous useradd fix.

    • [jim] - Updated Bash 3.2 Patch to -6.

    • [jim] - Updated Readline 5.2 Patch to -3.

    • [jim] - Updated Vim 3.1 Patch to -3.

  • September 02, 2007

    • [jim] - Updated Util-linux-ng to 2.13.

    • [jim] - Updated Tree to 1.5.1.1.

    • [jciccone] - Updated Glibc to 2.6.1.

    • [jim] - Updated Binutils to 2.18.

  • August 05, 2007

    • [jciccone] - Updated the bash config.cache to contain all of the differences between a cross-compiled and a native build.

  • July 23, 2007

    • [jciccone] - Updated Texinfo to 4.9.

    • [jciccone] - Updated E2fsprogs to 1.40.2.

    • [jciccone] - Updated M4 to 1.4.10.

    • [jciccone] - Updated Tar to 1.18.

    • [jciccone] - Updated Libtool to 1.5.24.

    • [jciccone] - Updated the Man Pages to 2.63.

  • July 22, 2007

    • [jciccone] - Updated GCC to 4.2.1.

  • July 20, 2007

    • [ken] - Make coreutils build in temp-system when the host cannot run the target programs.

  • July 1, 2007

    • [jciccone] - Updated the download location for the Man Pages package.

  • June 23, 2007

    • [jciccone] - Updated to Glibc 2.6. This includes adding a sed to Coreutils and Gzip to rename their internal implementations of futimens which are incompatible with the implementation provided by Glibc.

  • June 18, 2007

    • [jciccone] - Updated to Tar 1.17.

  • June 17, 2007

    • [jciccone] - Updated to Vim 7.1.

    • [jciccone] - Updated to Findutils 4.2.31.

    • [jciccone] - Updated to File 4.21.

    • [jciccone] - Updated to Less 403.

    • [jciccone] - Updated to Man Pages 2.57.

  • June 16, 2007

    • [Chris] - Removed creation of config.cache from temp-system Coreutils, as it no longer looks for setvbuf.

  • May 19, 2007

    • [jciccone] - Added a patch to Perl that accounts for a change in GCC 4.2.0. The patch causes makedepend.sh to also remove <command-line> as well as <command line>.

  • May 18, 2007

    • [jciccone] - Updated to GCC 4.2.0.

  • April 30, 2007

    • [jciccone] - Updated to Man Pages 2.46.

  • April 27, 2007

    • [jhuntwork] - We don't use the uname patch for temp-system Coreutils. No need to 'touch man/uname.1'.

  • April 24, 2007

    • [jciccone] - Updated to Psmisc 22.5.

  • April 20, 2007

    • [jciccone] - Updated to Gzip 1.3.12.

    • [jciccone] - Updated to Psmisc 22.4.

    • [jciccone] - Updated to Man Pages 2.44.

    • [jciccone] - Updated to M4 1.4.9.

    • [jciccone] - Updated to Coreutils 6.9.

  • April 10, 2007

    • [Chris] - Updated Gzip's list of installed programs - compress is no longer installed, and gunzip, uncompress, and zcat are now bash scripts rather than links.

  • February 25, 2007

    • [jim] - Updated to Linux 2.6.20.1.

    • [jim] - Updated to Linux Headers 2.6.20.1-02252007.

  • February 17, 2007

    • [Chris] - Moved the build of the File package in cross-tools to the beginning of the chapter.

    • [jim] - Updated to Gzip 1.3.11.

  • February 16, 2007

    • [Chris] - Changed the wording in the "Build Variables" page to make it clearer.

      [Chris] - Added command to Udev installation to remove Udev rules it installs.

      [Chris] - Removed Ncurses patch for buggy versions of Bash from from the final-system build (it's still in the temp-system).

      [Chris] - Removed unneeded /tools/bin/cc symlink.

  • February 15, 2007

    • [jim] - Fix a building of Ncurses when an unpatched version of Bash 3.x is used.

  • February 14, 2007

    • [jim] - Updated to GCC 4.1.2.

  • February 5, 2007

    • [jim] - Updated to Automake 1.10.

  • February 4, 2007

    • [jim] - Updated to Linux 2.6.20.

    • [jim] - Updated to Linux Headers 2.6.20-02042007.

    • [jim] - Updated to Udev 105.

  • January 23, 2007

    • [jim] - Updated to Linux Headers 2.6.19.2-01232007.

    • [jim] - Update to Glibc Branch Update Patch.

  • January 15, 2007

    • [jim] - Updated to Linux 2.6.19.2.

    • [jim] - Updated to Linux Headers 2.6.19.2-01152007.

    • [jim] - Updated to Tree 1.5.1.

    • [jim] - Updated to Udev 104.

    • [jim] - Updated to Udev Rules 1.1-pre4.

    • [Chris] - Removed obsolete note from bzip2 instructions about performing rm /usr/bin/bz*.

  • January 12, 2007

    • [jim] - Update to Glibc Branch Update Patch.

    • [jim] - Update to Binutils Branch Update Patch.

  • January 7, 2007

    • [jim] - Updated to Bzip2 1.0.4.

  • December 23, 2006

    • [jciccone] - Updated to Ncurses 5.6.

  • December 15, 2006

    • [jim] - Updated to Gzip 1.3.9.

    • [jim] - Updated to IPRoute2 2.6.19-061214.

  • December 13, 2006

    • [jim] - Added File to Cross-tools.

  • December 12, 2006

    • [jim] - Updated to Linux 2.6.19.1.

    • [jim] - Updated to Linux Headers 2.6.19.1-12122006.

    • [jim] - Added Readline Upstream Patch.

    • [jim] - Update Bash Upstream Patch.

    • [jim] - Updated to File 4.19.

  • December 10, 2006

    • [jim] - Updated to Gzip 1.3.8.

  • December 9, 2006

    • [jim] - Updated to Tar 1.16.1.

  • December 7, 2006

    • [jim] - Updated to Gzip 1.3.7.

    • [jim] - Updated to Coreutils 6.7.

    • [jim] - Reverting sysroot changes.

  • December 1, 2006

    • [jim] - Updated to Man-Pages 2.43.

    • [jim] - Removed MINOR patch and replaced it with a more complete upstream patch will all current updates to the 2.5 branch of glibc.

    • [jim] - Added Binutils Branch Update Patch.

    • [jim] - Reverted change in gettext build in temp-system.

    • [jim] - Updated to Coreutils 6.7.

  • November 29, 2006

    • [jim] - Updated to Linux Headers 2.6.19-11302006.

    • [jim] - Updated to Udev Rules 1.1-pre3.

  • November 29, 2006

    • [jim] - Updated to Linux 2.6.19.

    • [jim] - Updated to Linux Headers 2.6.19-11292006.

  • November 27, 2006

    • [jim] - Updated to Gettext 0.16.1.

  • November 26, 2006

    • [jim] - Updated to Man-Pages 2.42.

    • [jim] - Updated to Gzip 1.3.6.

  • November 25, 2006

    • [jim] - Updated to Findutils 4.2.29.

  • November 23, 2006

    • [Chris] - Added /bin/rm to essential symlinks - e2fsprogs testsuite hard-codes the location to that binary.

  • November 22, 2006

    • [jim] - Updated to Coreutils 6.6.

    • [jim] - Updated to Man 1.6e.

  • November 20, 2006

    • [jim] - Updated to Coreutils 6.5.

    • [jim] - Added Patch for Coreutils 6.5 ls segfault.

    • [jim] - Updated to M4 1.4.8.

    • [jim] - Updated to Linux 2.6.18.3.

    • [jim] - Updated to Linux Headers 2.6.18.3-11202006.

  • November 17, 2006

    • [jim] - Updated to Autoconf 2.61.

  • November 15, 2006

    • [jim] - Updated to IANA-Etc 2.20.

  • November 14, 2006

    • [jim] - Change to E2FSProgs, does not pick up the CC or LD variables.

  • November 12, 2006

    • [jim] - Updated to Linux Headers 2.6.18.2-11122006.

    • [jim] - Bash 3.2 patch updated with upstream fixes 001-005.

  • November 5, 2006

    • [jim] - Updated to Linux 2.6.18.2.

    • [jim] - Updated to Linux Headers 2.6.18.2-11052006.

  • November 4, 2006

    • [Chris] - Modified the instructions for disabling the installation of the groups program to account for changes in shadow's Makefile.

  • November 2, 2006

    • [jim] - Updated to File 4.18.

  • October 31, 2006

    • [jim] - Bash 3.2 patch updated with upstream fixes.

    • [jim] - Updated to Bootscripts 1.1-pre3.

  • October 30, 2006

    • [jim] - Updated to Udev Rules 1.1-pre2.

  • October 27, 2006

    • [jim] - Updated to Bootscripts 1.1-pre2.

    • [jim] - Updated syslog.conf file.

  • October 26, 2006

    • [jim] - Updated to Linux-Headers 2.6.18.1-10262006.

    • [jim] - Updated to Gettext 0.16.

    • [jim] - The nscd sed is no longer needed to build Glibc 2.5.

  • October 25, 2006

    • [Chris] - Updated to Psmisc 22.3.

    • [Chris] - Updated to Tcl 8.4.14.

    • [Chris] - Moved e2fsprogs and sed before coreutils, as Coreutils testsuite now requires e2fsprogs.

  • October 23, 2006

    • [Chris] - Removed unneeded additions to config.cache for temp-system Tar and Coreutils.

    • [jim] - Added touch man/uname.1 in temp-system Coreutils to prevent a build failure.

    • [jim] - Added Patch for a Versioning issue with Glibc 2.5.

  • October 22, 2006

    • [jim] - Updated to Linux 2.6.18.1.

    • [jim] - Updated to Linux Headers 2.6.18.1-10222006.

    • [jim] - Updated to Coreutils 6.4.

    • [jim] - Removed out of place udev text in bootscripts Networking.

  • October 21, 2006

    • [jim] - Updated to Inetutils 1.5.

    • [jim] - Updated to IPRoute2 2.6.18-061002.

    • [jim] - Updated to Tar 1.16.

    • [jim] - Updated to Udev 103.

    • [jim] - Updated to Coreutils 6.3.

  • October 20, 2006

    • [Chris] - Removed command to add "setvbuf_reversed" to temp-system bash as it is no longer needed with Bash 3.2.

    • [Chris] - Added command to man instructions to comment out MANPATH /usr/local/man (in addition to /usr/man).

  • October 15, 2006

    • [jim] - Updated Bash 3.2 with some unofficial upstream fixes. Thank you Chet Ramey.

  • October 12, 2006

    • [jim] - Added patch to fix build issue with Bash 3.2.

    • [jim] - Updated to Man-Pages 2.41.

    • [jim] - Updated to Glibc 2.5.

  • October 11, 2006

    • [jim] - Updated to Bash 3.2.

    • [jim] - Updated to Readline 5.2.

    • [jim] - Updated to Man-Pages 2.40.

    • [jim] - Updated to Udev 102.

  • October 4, 2006

    • [manuel] - Changed book license to the Open Publication License v1.0.

  • October 1, 2006

    • [Chris] - Removed obsolete command from Tcl instructions, as the issue it fixes has been fixed in the latest Tcl version.

  • September 29, 2006

    • [jim] - Updated to Linux Headers to 2.6.18-09302006.

    • [jim] - New patch for util-linux, replaces GCC 4 Fixes, the new patches fixes the same issues, and removes the use of syscalls. Syscalls were removed the unistd.h during santization.

  • September 28, 2006

    • [jim] - Added patch for Util-Linux to fix build issues due to headers change in the kernel.

    • [jim] - Updated to Texinfo 4.8a.

  • September 25, 2006

    • [jim] - Updated Bootscripts to 1.1-pre1. Adding in the boot logging feature.

    • [jim] - Updated to Udev 100.

    • [jim] - Updated Udev Rules for Udev 100.

    • [jim] - Updated to M4 1.4.7.

    • [jim] - Updated to Linux to 2.6.18.

    • [jim] - Updated to Linux Headers to 2.6.18-09252006.

    • [jim] - Udev library libvolume_id is used by HAL, which makes us change our build to a multilib build of udev libaries only for 32 and N32.

  • September 18, 2006

    • [jim] - Updated Bison to a multilib build in all support architectures.

  • August 28, 2006

    • [jim] - Updated to Gettext 0.15.

    • [jim] - Updated to Shadow 4.0.18.1.

    • [jim] - Updated to Coreutils 5.97.

    • [jim] - Updated to Procps 3.2.7.

    • [jim] - Updated to Man-Pages 2.39.

    • [jim] - Updated to Autoconf 2.60.

    • [jim] - Updated to TCL 8.4.13.

    • [jim] - Updated to M4 1.4.6.

    • [jim] - Updated to Findutils 4.2.28.

    • [jim] - Updated to Coreutils Uname Patch -2, which supports all architectures.

    • [jim] - Updated to Vim Patch -10, which contains upstream fixes.

    • [jim] - Updated to Udev 098 and udev-cross-lfs to 1.1-08272006 rules.

  • August 28, 2006

    • [jim] - Changelog restarted, see the 1.0.0 book for the old changelog.

Branch Synced from the Release of LFS 6.0 on February 23rd, 2005

1.4. Changelog for PowerPC

Below is a list of changes specifics for this architecture made since the previous release of the book. For general changes see Master Changelog,

Changelog Entries:

  • January 20, 2012

    • [Jonathan] - Updated Yaboot from 1.3.14 to 1.3.17 thanks to Code Monkey.

  • August 28, 2010

    • [Jonathan] - Corrected boot kernel ARCH from "ppc" to "powerpc".

  • January 12, 2010

    • [Jonathan] - Updated download location for Parted.

  • July 26, 2009

    • [jim] - By default parted requires the device-mapper library. We don't install it so we disable it.

    • [jim] - Final system GCC failes on Powerpc. The following is a temporary hack until a permanent fix is in place. See GCC bug http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37739 fo details.

  • July 23, 2009

    • [jim] - Updated Parted to 1.9.0.

  • February 18, 2009

    • [Jim] - Fixed GCC Build - See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37739.

  • February 17, 2009

    • [Jim] - Added patch for HFS Utils that fixes a missing errno.h and allows HFS Utils to see beyond 2gb.

  • February 16, 2009

    • [Jim] - Fixed GCC Build on Powerpc. Changed STANDARD_STARTFILE_PREFIX_1 to use sysv4.h.

  • January 7, 2009

    • [Jim] - Updated to Yaboot 1.3.14.

  • November 17, 2007

    • [ken] - Add --disable-Werror to parted (required by recent gcc).

  • September 03, 2007

    • [jim] - Updated Parted to 1.8.8.

  • February 22, 2007

    • [ken] - Mention that Parted installs a library.

      [ken] - Use the same patch for Powerpc-Utils as in ppc64.

  • January 15, 2007

    • [jim] - Updated to Parted 1.8.2.

  • November 17, 2006

    • [jim] - Updated to Parted 1.8.0.

  • October 11, 2006

    • [jim] - Updated to Parted 1.7.1.

  • August 28, 2006

    • [jim] - Changelog restarted, see the 1.0.0 book for the old changelog.

1.5. Resources

1.5.1. FAQ

If during the building of the CLFS system you encounter any errors, have any questions, or think there is a typo in the book, please start by consulting the Frequently Asked Questions (FAQ) that is located at http://trac.cross-lfs.org/wiki/faq.

1.5.2. Mailing Lists

The cross-lfs.org server hosts a number of mailing lists used for the development of the CLFS project. These lists include the main development and support lists, among others. If the FAQ does not contain your answer, you can search the CLFS lists via The Mail Archive http://www.mail-archive.com. You can find the mail lists with the following link:

http://www.mail-archive.com/index.php?hunt=clfs

For information on the different lists, how to subscribe, archive locations, and additional information, visit http://trac.cross-lfs.org/wiki/lists.

1.5.3. News Server

Cross-LFS does not maintain its own News Server, but we do provide access via gmane.org http://gmane.org. If you want to subscribe to the Cross-LFS lists via a newsreader you can utilize gmane.org. You can find the gmane search for CLFS with the following link:

http://dir.gmane.org/search.php?match=clfs

1.5.4. IRC

Several members of the CLFS community offer assistance on our community Internet Relay Chat (IRC) network. Before using this support, please make sure that your question is not already answered in the CLFS FAQ or the mailing list archives. You can find the IRC network at chat.freenode.net. The support channel for cross-lfs is named #cross-lfs. If you need to show people the output of your problems, please use http://pastebin.cross-lfs.org and reference the pastebin URL when asking your questions.

1.5.5. Mirror Sites

The CLFS project has a number of world-wide mirrors to make accessing the website and downloading the required packages more convenient. Please visit the CLFS website at http://trac.cross-lfs.org/wiki/mirrors for mirrors of CLFS.

1.5.6. Contact Information

Please direct all your questions and comments to the CLFS mailing lists (see above).

1.6. Help

If an issue or a question is encountered while working through this book, check the FAQ page at http://trac.cross-lfs.org/wiki/faq#generalfaq. Questions are often already answered there. If your question is not answered on this page, try to find the source of the problem. The following hint will give you some guidance for troubleshooting: http://hints.cross-lfs.org/index.php/Errors.

We also have a wonderful CLFS community that is willing to offer assistance through the mailing lists and IRC (see the Section 1.5, “Resources” section of this book). However, we get several support questions everyday and many of them can be easily answered by going to the FAQ and by searching the mailing lists first. So for us to offer the best assistance possible, you need to do some research on your own first. This allows us to focus on the more unusual support needs. If your searches do not produce a solution, please include all relevant information (mentioned below) in your request for help.

1.6.1. Things to Mention

Apart from a brief explanation of the problem being experienced, the essential things to include in any request for help are:

  • The version of the book being used (in this case 1.2.0)

  • The host distribution and version being used to create CLFS.

  • The architecture of the host and target.

  • The value of the $CLFS_HOST, $CLFS_TARGET, $BUILD32, and $BUILD64 environment variables.

  • The package or section in which the problem was encountered.

  • The exact error message or symptom received. See Section 1.6.3, “Compilation Problems” below for an example.

  • Note whether you have deviated from the book at all. A package version change or even a minor change to any command is considered deviation.

Note

Deviating from this book does not mean that we will not help you. After all, the CLFS project is about personal preference. Be upfront about any changes to the established procedure—this helps us evaluate and determine possible causes of your problem.

1.6.2. Configure Script Problems

If something goes wrong while running the configure script, review the config.log file. This file may contain the errors you encountered during configure. It often logs errors that may have not been printed to the screen. Include only the relevant lines if you need to ask for help.

1.6.3. Compilation Problems

Both the screen output and the contents of various files are useful in determining the cause of compilation problems. The screen output from the configure script and the make run can be helpful. It is not necessary to include the entire output, but do include enough of the relevant information. Below is an example of the type of information to include from the screen output from make:

gcc -DALIASPATH=\"/mnt/clfs/usr/share/locale:.\"
-DLOCALEDIR=\"/mnt/clfs/usr/share/locale\"
-DLIBDIR=\"/mnt/clfs/usr/lib\"
-DINCLUDEDIR=\"/mnt/clfs/usr/include\" -DHAVE_CONFIG_H -I. -I.
-g -O2 -c getopt1.c
gcc -g -O2 -static -o make ar.o arscan.o commands.o dir.o
expand.o file.o function.o getopt.o implicit.o job.o main.o
misc.o read.o remake.o rule.o signame.o variable.o vpath.o
default.o remote-stub.o version.o opt1.o
-lutil job.o: In function `load_too_high':
/clfs/tmp/make-3.79.1/job.c:1565: undefined reference
to `getloadavg'
collect2: ld returned 1 exit status
make[2]: *** [make] Error 1
make[2]: Leaving directory `/clfs/tmp/make-3.79.1'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/clfs/tmp/make-3.79.1'
make: *** [all-recursive-am] Error 2

In this case, many people would just include the bottom section:

make [2]: *** [make] Error 1

This is not enough information to properly diagnose the problem because it only notes that something went wrong, not what went wrong. The entire section, as in the example above, is what should be saved because it includes the command that was executed and the associated error message(s).

An excellent article about asking for help on the Internet is available online at http://catb.org/~esr/faqs/smart-questions.html. Read and follow the hints in this document to increase the likelihood of getting the help you need.

Part II. Preparing for the Build

Chapter 2. Preparing a New Partition

2.1. Introduction

In this chapter, the partition which will host the CLFS system is prepared. We will create the partition itself, create a file system on it, and mount it.

2.2. Creating a New Partition

Like most other operating systems, CLFS is usually installed on a dedicated partition. The recommended approach to building a CLFS system is to use an available empty partition or, if you have enough unpartitioned space, to create one. However, if you're building for a different architecture you can simply build everything in “/mnt/clfs” and transfer it to your target machine.

A minimal system requires around 6 gigabytes (GB). This is enough to store all the source tarballs and compile the packages. The CLFS system itself will not take up this much room. A large portion of this requirement is to provide sufficient free temporary storage. Compiling packages can require a lot of disk space which will be reclaimed after the package is installed. If the CLFS system is intended to be the primary Linux system, additional software will probably be installed which will require additional space (2-10 GB).

Because there is not always enough Random Access Memory (RAM) available for compilation processes, it is a good idea to use a small disk partition as swap space. This is used by the kernel to store seldom-used data and leave more memory available for active processes. The swap partition for an CLFS system can be the same as the one used by the host system, in which case it is not necessary to create another one.

Open Firmware and the Mac OS's impose certain requirements on partitioning. This is discussed in Appendix E. In particular, you cannot use fdisk, you will need an apple_bootstrap partition, and that should precede any OSX partition.

Start a disk partitioning program such as parted with a command line option naming the hard disk on which the new partition will be created—for example /dev/hda for the primary Integrated Drive Electronics (IDE) disk. Create at least an apple bootstrap partition, a Linux native partition, and a swap partition, if needed. Please refer to parted(8) if you do not yet know how to use the programs.

Remember the designation of the new partition (e.g., hda5). This book will refer to this as the CLFS partition. Also remember the designation of the swap partition. These names will be needed later for the /etc/fstab file. You will also need to know the designation of the apple_bootstrap partition for the yaboot.conf when you set this up before you run ybin.

2.3. Creating a File System on the Partition

Now that a blank partition has been set up, the file system can be created. The most widely-used system in the Linux world is the second extended file system (ext2), but with newer high-capacity hard disks, journaling file systems are becoming increasingly popular. We will create an ext2 file system. Instructions for other file systems can be found at http://cblfs.cross-lfs.org/index.php?section=6#File_System.

To create an ext2 file system on the CLFS partition, run the following:

mke2fs /dev/[xxx]

Replace [xxx] with the name of the CLFS partition (hda5 in our previous example).

Note

Some host distributions use custom features in their filesystem creation tools (E2fsprogs). This can cause problems when booting into your new CLFS system, as those features will not be supported by the CLFS-installed E2fsprogs; you will get an error similar to unsupported filesystem features, upgrade your e2fsprogs. To check if your host system uses custom enhancements, run the following command:

debugfs -R feature /dev/[xxx]

If the output contains features other than: dir_index; filetype; large_file; resize_inode or sparse_super then your host system may have custom enhancements. In that case, to avoid later problems, you should compile the stock E2fsprogs package and use the resulting binaries to re-create the filesystem on your CLFS partition:

cd /tmp
tar xjf /path/to/sources/e2fsprogs-1.41.14.tar.bz2
cd e2fsprogs-1.41.14
mkdir build
cd build
../configure
make #note that we intentionally don't 'make install' here!
./misc/mke2fs /dev/[xxx]
cd /tmp
rm -rf e2fsprogs-1.41.14

If a swap partition was created, it will need to be initialized for use by issuing the command below. If you are using an existing swap partition, there is no need to format it.

mkswap /dev/[yyy]

Replace [yyy] with the name of the swap partition.

2.4. Mounting the New Partition

Now that a file system has been created, the partition needs to be made accessible. In order to do this, the partition needs to be mounted at a chosen mount point. For the purposes of this book, it is assumed that the file system is mounted under /mnt/clfs, but the directory choice is up to you.

Choose a mount point and assign it to the CLFS environment variable by running:

export CLFS=/mnt/clfs

Next, create the mount point and mount the CLFS file system by running:

mkdir -pv ${CLFS}
mount -v /dev/[xxx] ${CLFS}

Replace [xxx] with the designation of the CLFS partition.

If using multiple partitions for CLFS (e.g., one for / and another for /usr), mount them using:

mkdir -pv ${CLFS}
mount -v /dev/[xxx] ${CLFS}
mkdir -v ${CLFS}/usr
mount -v /dev/[yyy] ${CLFS}/usr

Replace [xxx] and [yyy] with the appropriate partition names.

Ensure that this new partition is not mounted with permissions that are too restrictive (such as the nosuid, nodev, or noatime options). Run the mount command without any parameters to see what options are set for the mounted CLFS partition. If nosuid, nodev, and/or noatime are set, the partition will need to be remounted.

Now that there is an established place to work, it is time to download the packages.

Chapter 3. Packages and Patches

3.1. Introduction

This chapter includes a list of packages that need to be downloaded for building a basic Linux system. The listed version numbers correspond to versions of the software that are known to work, and this book is based on their use. We highly recommend not using newer versions because the build commands for one version may not work with a newer version. The newest package versions may also have problems that require work-arounds. These work-arounds will be developed and stabilized in the development version of the book.

Download locations may not always be accessible. If a download location has changed since this book was published, Google (http://www.google.com/) provides a useful search engine for most packages. If this search is unsuccessful, try one of the alternative means of downloading discussed at http://cross-lfs.org/files/packages/1.2.0/.

Create a directory called ${CLFS}/sources and use it to store your sources and patches. All packages should be compiled there as well. Using any other location for compiling may have unexpected results.

To create this directory, execute, as user root, the following command before starting the download session:

mkdir -v ${CLFS}/sources

Make this directory writable and sticky. When a directory is marked “sticky”, that means that even if multiple users have write permission on that directory, any file within that directory can only be deleted or modified by its owner. The following command will enable the write and sticky modes:

chmod -v a+wt ${CLFS}/sources

You can download all needed packages and patches into this directory either by using the links on the following pages in this section, or by passing the download list to wget.

3.2. All Packages

Download or otherwise obtain the following packages:

Autoconf (2.68) - 1,144 KB:

Home page: http://www.gnu.org/software/autoconf

Download: http://ftp.gnu.org/gnu/autoconf/autoconf-2.68.tar.xz

MD5 sum: 723677f7727542d273112e7feb870a7a

Automake (1.11.1) - 1,044 KB:

Home page: http://www.gnu.org/software/automake

Download: http://ftp.gnu.org/gnu/automake/automake-1.11.1.tar.bz2

MD5 sum: c2972c4d9b3e29c03d5f2af86249876f

Bash (4.2) - 6,848 KB:

Home page: http://www.gnu.org/software/bash

Download: http://ftp.gnu.org/gnu/bash/bash-4.2.tar.gz

MD5 sum: 3fb927c7c33022f1c327f14a81c0d4b0

Binutils (2.21.1a) - 18,553 KB:

Home page: http://sources.redhat.com/binutils

Download: http://ftp.gnu.org/gnu/binutils/binutils-2.21.1a.tar.bz2

MD5 sum: bde820eac53fa3a8d8696667418557ad

Bison (2.5) - 2,030 KB:

Home page: http://www.gnu.org/software/bison

Download: http://ftp.gnu.org/gnu/bison/bison-2.5.tar.bz2

MD5 sum: 9dba20116b13fc61a0846b0058fbe004

Bootscripts for CLFS (1.2-pre11) - 44 KB:

Download: http://cross-lfs.org/files/packages/1.2.0/bootscripts-cross-lfs-1.2-pre11.tar.bz2

MD5 sum: f105f94f59ad534968ff679f2293ddd6

Bzip2 (1.0.6) - 764 KB:

Home page: http://www.bzip.org/

Download: http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz

MD5 sum: 00b516f4704d4a7cb50a1d97e6e8e15b

ClooG-PPL (0.15.11) - 756 KB:

Home page: http://cloog.org

Download: ftp://gcc.gnu.org/pub/gcc/infrastructure/cloog-ppl-0.15.11.tar.gz

MD5 sum: 060ae4df6fb8176e021b4d033a6c0b9e

Coreutils (8.12) - 11,497 KB:

Home page: http://www.gnu.org/software/coreutils

Download: http://ftp.gnu.org/gnu/coreutils/coreutils-8.12.tar.gz

MD5 sum: fce7999953a67243d00d75cc86dbcaa6

DejaGNU (1.5) - 564 KB:

Home page: http://www.gnu.org/software/dejagnu

Download: http://ftp.gnu.org/gnu/dejagnu/dejagnu-1.5.tar.gz

MD5 sum: 3df1cbca885e751e22d3ebd1ac64dc3c

DHCPCD (5.2.12) - 71 KB:

Home page: http://roy.marples.name/projects/dhcpcd

Download: http://roy.marples.name/downloads/dhcpcd/dhcpcd-5.2.12.tar.bz2

MD5 sum: 832e3cd6bfcaff64e9476e0ff7849e8f

Diffutils (3.0) - 1,784 KB:

Home page: http://www.gnu.org/software/diffutils

Download: http://ftp.gnu.org/gnu/diffutils/diffutils-3.0.tar.gz

MD5 sum: 684aaba1baab743a2a90e52162ff07da

EGLIBC (2.13) - 16,100 KB:

Home page: http://www.eglibc.org/home

Download: http://cross-lfs.org/files/packages/1.2.0/eglibc-2.13-r13356.tar.bz2

MD5 sum: 689231137135771df3637e99ad169083

E2fsprogs (1.41.14) - 4,408 KB:

Home page: http://e2fsprogs.sourceforge.net

Download: http://downloads.sourceforge.net/e2fsprogs/e2fsprogs-1.41.14.tar.gz

MD5 sum: 05f70470aea2ef7efbb0845b2b116720

Expect (5.45) - 616 KB:

Home page: http://expect.sourceforge.net

Download: http://downloads.sourceforge.net/project/expect/Expect/5.45/expect5.45.tar.gz

MD5 sum: 44e1a4f4c877e9ddc5a542dfa7ecc92b

File (5.07) - 584 KB:

Home page: http://www.darwinsys.com/file

Download: ftp://ftp.astron.com/pub/file/file-5.07.tar.gz

MD5 sum: b8d1f9a8a644067bd0a703cebf3f4858

Note

File (5.07) may no longer be available at the listed location. The site administrators of the master download location occasionally remove older versions when new ones are released. An alternative download location that may have the correct version available is http://cross-lfs.org/files/packages/1.2.0/.

Findutils (4.4.2) - 2,099 KB:

Home page: http://www.gnu.org/software/findutils

Download: http://ftp.gnu.org/gnu/findutils/findutils-4.4.2.tar.gz

MD5 sum: 351cc4adb07d54877fa15f75fb77d39f

Flex (2.5.35) - 1,227 KB:

Home page: http://flex.sourceforge.net

Download: http://downloads.sourceforge.net/flex/flex-2.5.35.tar.bz2

MD5 sum: 10714e50cea54dc7a227e3eddcd44d57

Gawk (3.1.8) - 1,940 KB:

Home page: http://www.gnu.org/software/gawk

Download: http://ftp.gnu.org/gnu/gawk/gawk-3.1.8.tar.bz2

MD5 sum: 52b41c6c4418b3226dfb8f82076193bb

GCC (4.6.0) - 69,904 KB:

Home page: http://gcc.gnu.org

Download: ftp://gcc.gnu.org/pub/gcc/releases/gcc-4.6.0/gcc-4.6.0.tar.bz2

MD5 sum: 93d1c436bf991564524701259b6285a2

Gettext (0.18.1.1) - 14,788 KB:

Home page: http://www.gnu.org/software/gettext

Download: http://ftp.gnu.org/gnu/gettext/gettext-0.18.1.1.tar.gz

MD5 sum: 3dd55b952826d2b32f51308f2f91aa89

Glib (2.28.6) - 6,956 KB:

Home page: http://developer.gnome.org/glib/

Download: http://ftp.gnome.org/pub/gnome/sources/glib/2.28/glib-2.28.6.tar.bz2

MD5 sum: 7d8fc15ae70d5111c0cf2a79d50ef717

GMP (5.0.2) - 2,025 KB:

Home page: http://gmplib.org/

Download: http://ftp.gnu.org/gnu/gmp/gmp-5.0.2.tar.bz2

MD5 sum: 0bbaedc82fb30315b06b1588b9077cd3

Grep (2.8) - 1,757 KB:

Home page: http://www.gnu.org/software/grep

Download: http://ftp.gnu.org/gnu/grep/grep-2.8.tar.gz

MD5 sum: cb2dfc502c5afc7a4a6e5f6cefd6850e

Groff (1.21) - 3,776 KB:

Home page: http://www.gnu.org/software/groff

Download: http://ftp.gnu.org/gnu/groff/groff-1.21.tar.gz

MD5 sum: 8b8cd29385b97616a0f0d96d0951c5bf

Gzip (1.4) - 888 KB:

Home page: http://www.gzip.org

Download: http://ftp.gnu.org/gnu/gzip/gzip-1.4.tar.gz

MD5 sum: e381b8506210c794278f5527cba0e765

Iana-Etc (2.30) - 200 KB:

Home page: http://www.archlinux.org/packages/core/any/iana-etc/

Download: http://ftp.cross-lfs.org/pub/clfs/conglomeration/iana-etc/iana-etc-2.30.tar.bz2

MD5 sum: 3ba3afb1d1b261383d247f46cb135ee8

IPRoute2 (2.6.38) - 390 KB:

Home page: http://www.linuxfoundation.org/en/Net:Iproute2

Download: http://devresources.linux-foundation.org/dev/iproute2/download/iproute2-2.6.38.tar.bz2

MD5 sum: a243bfea837e71824b7ca26c3bb45fa8

IPutils (s20101006) - 96 KB:

Home page: http://www.linuxfoundation.org/en/Net:Iputils

Download: http://www.skbuff.net/iputils/iputils-s20101006.tar.bz2

MD5 sum: a36c25e9ec17e48be514dc0485e7376c

Kbd (1.15.3) - 1,660 KB:

Download: ftp://devel.altlinux.org/legion/kbd/kbd-1.15.3.tar.gz

MD5 sum: 8143e179a0f3c25646ce5085e8777200

Less (443) - 304 KB:

Home page: http://www.greenwoodsoftware.com/less

Download: http://www.greenwoodsoftware.com/less/less-443.tar.gz

MD5 sum: 47db098fb3cdaf847b3c4be05ee954fc

Libee (0.3.1) - 344 KB:

Home page: http://www.libee.org/

Download: http://www.libee.org/files/download/libee-0.3.1.tar.gz

MD5 sum: 61403a9a62b984381cf48454664f915e

Libestr (0.1.0) - 308 KB:

Home page: http://sourceforge.net/projects/libestr/

Download: http://sourceforge.net/projects/libestr/files/libestr-0.1.0.tar.gz

MD5 sum: 1b8fe449cffc259075d327334c93bbda

Libtool (2.4) - 836 KB:

Home page: http://www.gnu.org/software/libtool

Download: http://ftp.gnu.org/gnu/libtool/libtool-2.4.tar.xz

MD5 sum: 4e6144439d95d7332dc50ace6dd24c55

Linux (2.6.39) - 74,316 KB:

Home page: http://www.kernel.org

Download: http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.39.tar.bz2

MD5 sum: 1aab7a741abe08d42e8eccf20de61e05

M4 (1.4.16) - 1,232 KB:

Home page: http://www.gnu.org/software/m4

Download: http://ftp.gnu.org/gnu/m4/m4-1.4.16.tar.bz2

MD5 sum: 8a7cef47fecab6272eb86a6be6363b2f

Make (3.82) - 1,216 KB:

Home page: http://www.gnu.org/software/make

Download: http://ftp.gnu.org/gnu/make/make-3.82.tar.bz2

MD5 sum: 1a11100f3c63fcf5753818e59d63088f

Man (1.6g) - 252 KB:

Home page: http://primates.ximian.com/~flucifredi/man

Download: http://primates.ximian.com/~flucifredi/man/man-1.6g.tar.gz

MD5 sum: ba154d5796928b841c9c69f0ae376660

Man-pages (3.32) - 1,108 KB:

Home page: http://www.win.tue.nl/~aeb/linux/man

Download: http://mirror.anl.gov/pub/linux/docs/man-pages/man-pages-3.32.tar.bz2

MD5 sum: 1278c5289660e42a597fefd30d9bdcf0

Module-Init-Tools (3.12) - 920 KB:

Home page: http://www.kerneltools.org/KernelTools.org

Download: http://www.kernel.org/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.12.tar.bz2

MD5 sum: 8b2257ce9abef74c4a44d825d23140f3

MPC (0.9) - 556 KB:

Home page: http://www.multiprecision.org/

Download: http://www.multiprecision.org/mpc/download/mpc-0.9.tar.gz

MD5 sum: 0d6acab8d214bd7d1fbbc593e83dd00d

MPFR (3.0.1) - 1,128 KB:

Home page: http://www.mpfr.org/

Download: http://www.mpfr.org/mpfr-3.0.1/mpfr-3.0.1.tar.bz2

MD5 sum: bfbecb2eacb6d48432ead5cfc3f7390a

Ncurses (5.9) - 2,764 KB:

Home page: http://www.gnu.org/software/ncurses

Download: ftp://ftp.gnu.org/pub/gnu/ncurses/ncurses-5.9.tar.gz

MD5 sum: 8cb9c412e5f2d96bc6f459aa8c6282a1

Patch (2.6.1) - 248 KB:

Home page: http://savannah.gnu.org/projects/patch

Download: http://ftp.gnu.org/gnu/patch/patch-2.6.1.tar.bz2

MD5 sum: 0818d1763ae0c4281bcdc63cdac0b2c0

Perl (5.14.0) - 13,250 KB:

Home page: http://www.perl.org

Download: http://www.cpan.org/src/5.0/perl-5.14.0.tar.bz2

MD5 sum: e7457deea78330c5f8eebb2fd2a45479

Pkg-config (0.26) - 388 KB:

Home page: http://pkgconfig.freedesktop.org/wiki/

Download: http://pkgconfig.freedesktop.org/releases/pkg-config-0.26.tar.gz

MD5 sum: 47525c26a9ba7ba14bf85e01509a7234

PPL (0.11.2) - 12,060 KB:

Home page: http://bugseng.com/products/ppl/

Download: ftp://ftp.cs.unipr.it/pub/ppl/releases/0.11.2/ppl-0.11.2.tar.bz2

MD5 sum: c24429e6c3bc97d45976a63f40f489a1

Procps (3.2.8) - 279 KB:

Home page: http://procps.sourceforge.net

Download: http://procps.sourceforge.net/procps-3.2.8.tar.gz

MD5 sum: 9532714b6846013ca9898984ba4cd7e0

Psmisc (22.13) - 376 KB:

Home page: http://psmisc.sourceforge.net

Download: http://downloads.sourceforge.net/psmisc/psmisc-22.13.tar.gz

MD5 sum: e2c339e6b65b730042084023784a729e

Readline (6.2) - 2,228 KB:

Home page: http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html

Download: http://ftp.gnu.org/gnu/readline/readline-6.2.tar.gz

MD5 sum: 67948acb2ca081f23359d0256e9a271c

Rsyslog (6.1.7) - 2,336 KB:

Home page: http://www.rsyslog.com/

Download: http://download.rsyslog.com/rsyslog/rsyslog-6.1.7.tar.gz

MD5 sum: 7f14d4fb992c3cc81fd61e561298bd46

Sed (4.2.1) - 878 KB:

Home page: http://www.gnu.org/software/sed

Download: http://ftp.gnu.org/gnu/sed/sed-4.2.1.tar.bz2

MD5 sum: 7d310fbd76e01a01115075c1fd3f455a

Shadow (4.1.4.3) - 1,804 KB:

Home page: http://pkg-shadow.alioth.debian.org

Download: http://pkg-shadow.alioth.debian.org/releases/shadow-4.1.4.3.tar.bz2

MD5 sum: b8608d8294ac88974f27b20f991c0e79

Sysvinit (2.88dsf) - 104 KB:

Home page: http://savannah.nongnu.org/projects/sysvinit

Download: http://download.savannah.gnu.org/releases/sysvinit/sysvinit-2.88dsf.tar.bz2

MD5 sum: 6eda8a97b86e0a6f59dabbf25202aa6f

Tar (1.26) - 2,288 KB:

Home page: http://www.gnu.org/software/tar

Download: http://ftp.gnu.org/gnu/tar/tar-1.26.tar.bz2

MD5 sum: 2cee42a2ff4f1cd4f9298eeeb2264519

Tcl (8.5.9) - 4,368 KB:

Home page: http://www.tcl.tk

Download: http://downloads.sourceforge.net/tcl/tcl8.5.9-src.tar.gz

MD5 sum: 8512d8db3233041dd68a81476906012a

Texinfo (4.13a) - 2,686 KB:

Home page: http://www.gnu.org/software/texinfo

Download: http://ftp.gnu.org/gnu/texinfo/texinfo-4.13a.tar.gz

MD5 sum: 71ba711519209b5fb583fed2b3d86fcb

Udev (168) - 598 KB:

Home page: http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

Download: http://mirror.anl.gov/pub/linux/utils/kernel/hotplug/udev-168.tar.bz2

MD5 sum: 4a466078532ab5dd5c35acc3ea2ec9a1

Util-linux (2.19.1) - 4,397 KB:

Home page: http://userweb.kernel.org/~kzak/util-linux/

Download: http://mirror.anl.gov/pub/linux/utils/util-linux/v2.19/util-linux-2.19.1.tar.bz2

MD5 sum: 3eab06f05163dfa65479c44e5231932c

Vim (7.3) - 8,868 KB:

Home page: http://www.vim.org

Download: ftp://ftp.vim.org/pub/vim/unix/vim-7.3.tar.bz2

MD5 sum: 5b9510a17074e2b37d8bb38ae09edbf2

XZ Utils (5.0.2) - 1,000 KB:

Home page: http://tukaani.org/xz/

Download: http://tukaani.org/xz/xz-5.0.2.tar.bz2

MD5 sum: ee05b17a4062bb55cba099ef46eca007

Zlib (1.2.5) - 476 KB:

Home page: http://www.zlib.net

Download: http://zlib.net/zlib-1.2.5.tar.bz2

MD5 sum: be1e89810e66150f5b0327984d8625a0

Total size of these packages: about 311 MB

3.3. Additional Packages for PowerPC

Hfsutils (3.2.6) - 202 KB:

Home page: http://www.mars.org/home/rob/proj/hfs

Download: ftp://ftp.mars.org/pub/hfs/hfsutils-3.2.6.tar.gz

MD5 sum: fa572afd6da969e25c1455f728750ec4

Parted (1.9.0) - 2,581 KB:

Home page: http://www.gnu.org/software/parted

Download: http://ftp.gnu.org/gnu/parted/parted-1.9.0.tar.xz

MD5 sum: a9ffa9b69f0b6099b75c32a03bb12f7f

Powerpc-utils (1.1.3) - 24 KB:

Home page: http://packages.qa.debian.org/p/powerpc-utils.html

Download: http://ftp.debian.org/debian/pool/main/p/powerpc-utils/powerpc-utils_1.1.3.orig.tar.gz

MD5 sum: d879b109bb8f0d726304b60b147bff13

Yaboot (1.3.17) - 219 KB:

Home page: http://yaboot.ozlabs.org

Download: http://yaboot.ozlabs.org/releases/yaboot-1.3.17.tar.gz

MD5 sum: f599f52d1887a86fd798252d2946f635

Total size of these packages: about 3,026 KB

3.4. Needed Patches

In addition to the packages, several patches are also required. These patches correct any mistakes in the packages that should be fixed by the maintainer. The patches also make small modifications to make the packages easier to work with. The following patches will be needed to build a CLFS system:

Bash Branch Update Patch - 16 KB:

Download: http://patches.cross-lfs.org/dev/bash-4.2-branch_update-2.patch

MD5 sum: 6aef48cfd93b9109358eae0be9125946

Coreutils Uname Patch - 8 KB:

Download: http://patches.cross-lfs.org/dev/coreutils-8.12-uname-1.patch

MD5 sum: 683741cb2c4ab60cf9b61eb9f02ecd02

EGLIBC Dl Dep Fix Patch - 4 KB:

Download: http://patches.cross-lfs.org/dev/eglibc-2.13-r13356-dl_dep_fix-1.patch

MD5 sum: fd640e7758e8560839bde1358ee44885

Flex GCC 4.4.x Patch - 12 KB:

Download: http://patches.cross-lfs.org/dev/flex-2.5.35-gcc44-1.patch

MD5 sum: a6ffbba93d034380e12110bb6d399113

GCC Branch Update Patch - 1.5 MB:

Download: http://patches.cross-lfs.org/dev/gcc-4.6.0-branch_update-1.patch

MD5 sum: 3ff1f39dc12932736694bf6fb6a1846a

IPUtils Fixes Patch - 8 KB:

Download: http://patches.cross-lfs.org/dev/iputils-s20101006-fixes-1.patch

MD5 sum: 1add4b8cbee814310f95e61997019162

IPUtils Pregenerated Documentation Patch - 136 KB:

Download: http://patches.cross-lfs.org/dev/iputils-s20101006-doc-1.patch

MD5 sum: 2eee5e095005bf4be426797a4aefa27b

Kbd es.po Fix Patch - 1 KB:

Download: http://patches.cross-lfs.org/dev/kbd-1.15.3-es.po_fix-1.patch

MD5 sum: 476c4066c5c663b44b67acaa4cdef62e

Man i18n Patch - 12 KB:

Download: http://patches.cross-lfs.org/dev/man-1.6g-i18n-1.patch

MD5 sum: a5aba0cb5a95a7945db8c882334b7dab

Ncurses Bash Patch - 4 KB:

Download: http://patches.cross-lfs.org/dev/ncurses-5.9-bash_fix-1.patch

MD5 sum: c6f7f2ab0ebaf7721ebeb266641352db

Ncurses Branch Update Patch - 796 KB:

Download: http://patches.cross-lfs.org/dev/ncurses-5.9-branch_update-2.patch

MD5 sum: 125c256a66bd532c6c290dc2adfb7bc4

Perl Libc Patch - 4 KB:

Download: http://patches.cross-lfs.org/dev/perl-5.14.0-libc-1.patch

MD5 sum: 6efb1ffa5a6961c239024c445e0adc9a

Procps Fix HZ Errors Patch - 4 KB:

Download: http://patches.cross-lfs.org/dev/procps-3.2.8-fix_HZ_errors-1.patch

MD5 sum: 2ea4c8e9a2c2a5a291ec63c92d7c6e3b

Procps ps cgroup Patch - 4 KB:

Download: http://patches.cross-lfs.org/dev/procps-3.2.8-ps_cgroup-1.patch

MD5 sum: 3c478ef88fad23353e332b1b850ec630

Readline Branch Update - 4 KB:

Download: http://patches.cross-lfs.org/dev/readline-6.2-branch_update-1.patch

MD5 sum: 482e35a552bc8c4744aab0ddaa545559

Tar Man Page Patch - 76 KB:

Download: http://patches.cross-lfs.org/dev/tar-1.26-man-1.patch

MD5 sum: 074783d41f18c5c62a7cfc77e2678693

Texinfo New Compressors Patch - 2 KB:

Download: http://patches.cross-lfs.org/dev/texinfo-4.13a-new_compressors-1.patch

MD5 sum: 4ae2d3c132e21cb83b825bc691056d07

Vim Branch Update Patch - 552 KB:

Download: http://patches.cross-lfs.org/dev/vim-7.3-branch_update-2.patch

MD5 sum: 3790140dd2fd1963f285e4ba1bce5d1f

Total size of these patches: about NaN MB

In addition to the above required patches, there exist a number of optional patches created by the CLFS community. These optional patches solve minor problems or enable functionality that is not enabled by default. Feel free to peruse the patches database located at http://patches.cross-lfs.org/dev/ and acquire any additional patches to suit the system needs.

3.5. Additional Patches for PowerPC

GCC Specs Patch - 20 KB:

Download: http://patches.cross-lfs.org/dev/gcc-4.6.0-specs-1.patch

MD5 sum: 61d583984f9f12b6f37141e132fc7d57

HFS Utils Fixes Patch - 1 KB:

Download: http://patches.cross-lfs.org/dev/hfsutils-3.2.6-fixes-1.patch

MD5 sum: 8519f11aada2f393609d529621a9f1b1

Powerpc-utils Fixes Patch - 21 KB:

Download: http://patches.cross-lfs.org/dev/powerpc-utils_1.1.3-fixes-2.patch

MD5 sum: d2776b1a4977c5711037b8f1402f792a

Yaboot Ofpath_Path_Prefix Patch - .8 KB:

Download: http://patches.cross-lfs.org/dev/yaboot-1.3.17-ofpath_path_prefix-1.patch

MD5 sum: 3faf70e0cb4e4f62a1e8815c3452ab38

Total size of these patches: about 42.8 KB

Chapter 4. Final Preparations

4.1. About ${CLFS}

Throughout this book, the environment variable CLFS will be used several times. It is paramount that this variable is always defined. It should be set to the mount point chosen for the CLFS partition. Check that the CLFS variable is set up properly with:

echo ${CLFS}

Make sure the output shows the path to the CLFS partition's mount point, which is /mnt/clfs if the provided example was followed. If the output is incorrect, the variable can be set with:

export CLFS=/mnt/clfs

Having this variable set is beneficial in that commands such as install -dv ${CLFS}/tools can be typed literally. The shell will automatically replace “${CLFS}” with “/mnt/clfs” (or whatever the variable was set to) when it processes the command line.

If you haven't created the ${CLFS} directory, do so at this time by issuing the following commands:

install -dv ${CLFS}

Do not forget to check that ${CLFS} is set whenever you leave and reenter the current working environment (as when doing a “su” to root or another user).

4.2. Creating the ${CLFS}/tools Directory

All programs compiled in Constructing a Temporary System will be installed under ${CLFS}/tools to keep them separate from the programs compiled in Installing Basic System Software. The programs compiled here are temporary tools and will not be a part of the final CLFS system. By keeping these programs in a separate directory, they can easily be discarded later after their use. This also prevents these programs from ending up in the host production directories (easy to do by accident in Constructing a Temporary System).

Create the required directory by running the following as root:

install -dv ${CLFS}/tools

The next step is to create a /tools symlink on the host system. This will point to the newly-created directory on the CLFS partition. Run this command as root as well:

ln -sv ${CLFS}/tools /

Note

The above command is correct. The ln command has a few syntactic variations, so be sure to check info coreutils ln and ln(1) before reporting what you may think is an error.

The created symlink enables the toolchain to be compiled so that it always refers to /tools, meaning that the compiler, assembler, and linker will work. This will provide a common place for our temporary tools system.

4.3. Creating the ${CLFS}/cross-tools Directory

The cross-binutils and cross-compiler built in Constructing Cross-Compile Tools will be installed under ${CLFS}/cross-tools to keep them separate from the host programs. The programs compiled here are cross-tools and will not be a part of the final CLFS system or the temp-system. By keeping these programs in a separate directory, they can easily be discarded later after their use.

Create the required directory by running the following as root:

install -dv ${CLFS}/cross-tools

The next step is to create a /cross-tools symlink on the host system. This will point to the newly-created directory on the CLFS partition. Run this command as root as well:

ln -sv ${CLFS}/cross-tools /

The symlink isn't technically necessary (though the book's instructions do assume its existence), but is there mainly for consistency (because /tools is also symlinked to ${CLFS}/tools) and to simplify the installation of the cross-compile tools.

4.4. Adding the CLFS User

When logged in as user root, making a single mistake can damage or destroy a system. Therefore, we recommend building the packages as an unprivileged user. You could use your own user name, but to make it easier to set up a clean work environment, create a new user called clfs as a member of a new group (also named clfs) and use this user during the installation process. As root, issue the following commands to add the new user:

groupadd clfs
useradd -s /bin/bash -g clfs -d /home/clfs clfs
mkdir -pv /home/clfs
chown -v clfs:clfs /home/clfs

The meaning of the command line options:

-s /bin/bash

This makes bash the default shell for user clfs.

Important

The build instructions assume that the bash shell is in use.

-g clfs

This option adds user clfs to group clfs.

clfs

This is the actual name for the created group and user.

To log in as clfs (as opposed to switching to user clfs when logged in as root, which does not require the clfs user to have a password), give clfs a password:

passwd clfs

Grant clfs full access to ${CLFS}/cross-tools and ${CLFS}/tools by making clfs the directorys' owner:

chown -v clfs ${CLFS}/tools
chown -v clfs ${CLFS}/cross-tools

If a separate working directory was created as suggested, give user clfs ownership of this directory:

chown -v clfs ${CLFS}/sources

Next, login as user clfs. This can be done via a virtual console, through a display manager, or with the following substitute user command:

su - clfs

The “-” instructs su to start a login shell as opposed to a non-login shell. The difference between these two types of shells can be found in detail in bash(1) and info bash.

Note

Until specified otherwise, all commands from this point on should be done as the clfs user.

4.5. Setting Up the Environment

Set up a good working environment by creating two new startup files for the bash shell. While logged in as user clfs, issue the following command to create a new .bash_profile:

cat > ~/.bash_profile << "EOF"
exec env -i HOME=${HOME} TERM=${TERM} PS1='\u:\w\$ ' /bin/bash
EOF

When logged on as user clfs, the initial shell is usually a login shell which reads the /etc/profile of the host (probably containing some settings and environment variables) and then .bash_profile. The exec env -i.../bin/bash command in the .bash_profile file replaces the running shell with a new one with a completely empty environment, except for the HOME, TERM, and PS1 variables. This ensures that no unwanted and potentially hazardous environment variables from the host system leak into the build environment. The technique used here achieves the goal of ensuring a clean environment.

The new instance of the shell is a non-login shell, which does not read the /etc/profile or .bash_profile files, but rather reads the .bashrc file instead. Create the .bashrc file now:

cat > ~/.bashrc << "EOF"
set +h
umask 022
CLFS=/mnt/clfs
LC_ALL=POSIX
PATH=/cross-tools/bin:/bin:/usr/bin
export CLFS LC_ALL PATH
EOF

The set +h command turns off bash's hash function. Hashing is ordinarily a useful feature—bash uses a hash table to remember the full path of executable files to avoid searching the PATH time and again to find the same executable. However, the new tools should be used as soon as they are installed. By switching off the hash function, the shell will always search the PATH when a program is to be run. As such, the shell will find the newly compiled tools in /cross-tools as soon as they are available without remembering a previous version of the same program in a different location.

Setting the user file-creation mask (umask) to 022 ensures that newly created files and directories are only writable by their owner, but are readable and executable by anyone (assuming default modes are used by the open(2) system call, new files will end up with permission mode 644 and directories with mode 755).

The CLFS variable should be set to the chosen mount point.

The LC_ALL variable controls the localization of certain programs, making their messages follow the conventions of a specified country. If the host system uses a version of Glibc older than 2.2.4, having LC_ALL set to something other than “POSIX” or “C” (during this chapter) may cause issues if you exit the chroot environment and wish to return later. Setting LC_ALL to “POSIX” or “C” (the two are equivalent) ensures that everything will work as expected in the chroot environment.

By putting /cross-tools/bin at the beginning of the PATH, the cross-compiler built in Constructing Cross-Compile Tools will be picked up by the build process for the temp-system packages before anything that may be installed on the host. This, combined with turning off hashing, helps to ensure that you will be using the cross-compile tools to build the temp-system in /tools.

Finally, to have the environment fully prepared for building the temporary tools, source the just-created user profile:

source ~/.bash_profile

4.6. About the Test Suites

Most packages provide a test suite. Running the test suite for a newly built package is a good idea because it can provide a “sanity check” indicating that everything compiled correctly. A test suite that passes its set of checks usually proves that the package is functioning as the developer intended. It does not, however, guarantee that the package is totally bug free.

It is not possible to run testsuites when cross-compiling, so package installation instructions do not explain how to run testsuites until Installing Basic System Software.

Part III. Make the Cross-Compile Tools

Chapter 5. Constructing Cross-Compile Tools

5.1. Introduction

This chapter shows you how to create cross platform tools.

If for some reason you have to stop and come back later, remember to use the su - clfs command, and it will setup the build environment that you left.

5.1.1. Common Notes

Important

Before issuing the build instructions for a package, the package should be unpacked, and a cd into the created directory should be performed.

Several of the packages are patched before compilation, but only when the patch is needed to circumvent a problem. A patch is often needed in both this and the next chapters, but sometimes in only one or the other. Therefore, do not be concerned if instructions for a downloaded patch seem to be missing. Warning messages about offset or fuzz may also be encountered when applying a patch. Do not worry about these warnings, as the patch was still successfully applied.

During the compilation of most packages, there will be several warnings that scroll by on the screen. These are normal and can safely be ignored. These warnings are as they appear—warnings about deprecated, but not invalid, use of the C or C++ syntax. C standards change fairly often, and some packages still use the older standard. This is not a problem, but does prompt the warning.

Important

After installing each package, both in this and the next chapters, delete its source and build directories, unless specifically instructed otherwise. Deleting the sources prevents mis-configuration when the same package is reinstalled later.

5.2. Build CFLAGS

CFLAGS and CXXFLAGS must not be set during the building of cross-tools.

To disable CFLAGS and CXXFLAGS use the following commands:

unset CFLAGS
unset CXXFLAGS

Now add these to ~/.bashrc, just in case you have to exit and restart building later:

echo unset CFLAGS >> ~/.bashrc
echo unset CXXFLAGS >> ~/.bashrc

5.3. Build Variables

Setting Host and Target

During the building of the cross-compile tools you will need to set a few variables that will be dependent on your particular needs. The first variable will be the triplet of the host machine, which will be put into the CLFS_HOST variable. To account for the possibility that the host and target are the same arch, as cross-compiling won't work when host and target are the same, part of the triplet needs to be changed slightly to add "cross". Set CLFS_HOST using the following command:

export CLFS_HOST=$(echo ${MACHTYPE} | sed -e 's/-[^-]*/-cross/')

Now you will need to set the triplet for the target architecture. Set the target variable using the following command:

export CLFS_TARGET="powerpc-unknown-linux-gnu"

Now add these to ~/.bashrc, just in case you have to exit and restart building later:

cat >> ~/.bashrc << EOF
export CLFS_HOST="${CLFS_HOST}"
export CLFS_TARGET="${CLFS_TARGET}"
EOF

5.4. Linux-Headers-2.6.39

The Linux Kernel contains a make target that installs “sanitized” kernel headers.

5.4.1. Installation of Linux-Headers

For this step you will need the kernel tarball.

Install the kernel header files:

install -dv /tools/include
make mrproper
make ARCH=powerpc headers_check
make ARCH=powerpc INSTALL_HDR_PATH=dest headers_install
cp -rv dest/include/* /tools/include

The meaning of the make commands:

make mrproper

Ensures that the kernel source dir is clean.

make ARCH=powerpc headers_check

Sanitizes the raw kernel headers so that they can be used by userspace programs.

make ARCH=powerpc INSTALL_HDR_PATH=dest headers_install

Normally the headers_install target removes the entire destination directory (default /usr/include) before installing the headers. To prevent this, we tell the kernel to install the headers to a directory inside the source dir.

Details on this package are located in Section 10.5.2, “Contents of Linux-Headers.”

5.5. File-5.07

The File package contains a utility for determining the type of a given file or files.

5.5.1. Installation of File

Prepare File for compilation:

./configure --prefix=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.38.2, “Contents of File.”

5.6. M4-1.4.16

The M4 package contains a macro processor.

5.6.1. Installation of M4

Prepare M4 for compilation:

./configure --prefix=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.25.2, “Contents of M4.”

5.7. Ncurses-5.9

The Ncurses package contains libraries for terminal-independent handling of character screens.

5.7.1. Installation of Ncurses

The following patch fixes an issue with some Bash versions:

patch -Np1 -i ../ncurses-5.9-bash_fix-1.patch

Prepare Ncurses for compilation:

./configure --prefix=/cross-tools \
    --without-debug --without-shared

Only one binary is needed for the Cross-Tools. Build the headers and then build tic:

make -C include
make -C progs tic

Install tic with the following command:

install -v -m755 progs/tic /cross-tools/bin

Details on this package are located in Section 10.18.2, “Contents of Ncurses.”

5.8. GMP-5.0.2

GMP is a library for arithmetic on arbitrary precision integers, rational numbers, and floating-point numbers.

5.8.1. Installation of GMP

Prepare GMP for compilation:

CPPFLAGS=-fexceptions ./configure \
    --prefix=/cross-tools --enable-cxx

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.9.2, “Contents of GMP.”

5.9. MPFR-3.0.1

The MPFR library is a C library for multiple-precision floating-point computations with correct rounding.

5.9.1. Installation of MPFR

Prepare MPFR for compilation:

LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
./configure --prefix=/cross-tools \
    --enable-shared --with-gmp=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.10.2, “Contents of MPFR.”

5.10. MPC-0.9

MPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result.

5.10.1. Installation of MPC

Prepare MPC for compilation:

LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
./configure --prefix=/cross-tools \
    --with-gmp=/cross-tools \
    --with-mpfr=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.11.2, “Contents of MPC.”

5.11. PPL-0.11.2

The Parma Polyhedra Library (PPL) provides numerical abstractions especially targeted at applications in the field of analysis and verification of complex systems. CLooG-PPL requires this library.

5.11.1. Installation of PPL

Prepare PPL for compilation:

CPPFLAGS="-I/cross-tools/include" \
    LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
    ./configure --prefix=/cross-tools --enable-shared \
    --enable-interfaces="c,cxx" --disable-optimization \
    --with-libgmp-prefix=/cross-tools \
    --with-libgmpxx-prefix=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.12.2, “Contents of PPL.”

5.12. CLooG-PPL-0.15.11

CLooG-PPL is a library to generate code for scanning Z-polyhedra. In other words, it finds code that reaches each integral point of one or more parameterized polyhedra. GCC links with this library in order to enable the new loop generation code known as Graphite.

5.12.1. Installation of CLooG-PPL

The following prevents the configure script from setting LD_LIBRARY_PATH when it finds PPL. This will prevent any conflicts with libraries from the host system:

cp -v configure{,.orig}
sed -e "/LD_LIBRARY_PATH=/d" \
    configure.orig > configure

Prepare CLooG-PPL for compilation:

LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
    ./configure --prefix=/cross-tools --enable-shared --with-bits=gmp \
    --with-gmp=/cross-tools --with-ppl=/cross-tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.13.2, “Contents of CLooG-PPL.”

5.13. Cross Binutils-2.21.1a

The Binutils package contains a linker, an assembler, and other tools for handling object files.

5.13.1. Installation of Cross Binutils

It is important that Binutils be compiled before Glibc and GCC because both Glibc and GCC perform various tests on the available linker and assembler to determine which of their own features to enable.

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build directory:

mkdir -v ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

AR=ar AS=as ../binutils-2.21.1/configure \
  --prefix=/cross-tools --host=${CLFS_HOST} --target=${CLFS_TARGET} \
  --with-sysroot=${CLFS} --with-lib-path=/tools/lib --disable-nls --enable-shared \
  --disable-multilib

The meaning of the configure options:

AR=ar AS=as

This prevents Binutils from compiling with ${CLFS_HOST}-ar and ${CLFS_HOST}-as as they are provided by this package and therefore not installed yet.

--prefix=/cross-tools

This tells the configure script to prepare to install the package in the /cross-tools directory.

--host=${CLFS_HOST}

When used with --target, this creates a cross-architecture executable that creates files for ${CLFS_TARGET} but runs on ${CLFS_HOST}.

--target=${CLFS_TARGET}

When used with --host, this creates a cross-architecture executable that creates files for ${CLFS_TARGET} but runs on ${CLFS_HOST}.

--with-lib-path=/tools/lib

This tells the configure script to specify the library search path during the compilation of Binutils, resulting in /tools/lib being passed to the linker. This prevents the linker from searching through library directories on the host.

--disable-nls

This disables internationalization as i18n is not needed for the cross-compile tools.

--enable-shared

Enable the creation of the shared libraries.

--disable-multilib

This option disables the building of a multilib capable Binutils.

Compile the package:

make configure-host
make

The meaning of the make options:

configure-host

This checks the host environment and makes sure all the necessary tools are available to compile Binutils.

Install the package:

make install

Copy libiberty.h to /tools/include directory:

cp -v ../binutils-2.21.1/include/libiberty.h /tools/include

Details on this package are located in Section 10.15.2, “Contents of Binutils.”

5.14. Cross GCC-4.6.0 - Static

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

5.14.1. Installation of Cross GCC Compiler with Static libgcc and no Threads

The following patch contains a number of updates to the 4.6.0 branch by the GCC developers:

patch -Np1 -i ../gcc-4.6.0-branch_update-1.patch

Make a couple of essential adjustments to the specs file to ensure GCC uses our build environment:

patch -Np1 -i ../gcc-4.6.0-specs-1.patch

Change the StartFile Spec and Standard Include Dir so that GCC looks in /tools:

echo -en '#undef STANDARD_INCLUDE_DIR\n#define STANDARD_INCLUDE_DIR "/tools/include/"\n\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_1\n#define STANDARD_STARTFILE_PREFIX_1 "/tools/lib/"\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_2\n#define STANDARD_STARTFILE_PREFIX_2 ""\n' >> gcc/config/rs6000/sysv4.h

Now alter gcc's c preprocessor's default include search path to use /tools only:

cp -v gcc/Makefile.in{,.orig}
sed -e "s@\(^CROSS_SYSTEM_HEADER_DIR =\).*@\1 /tools/include@g" \
    gcc/Makefile.in.orig > gcc/Makefile.in

We will create a dummy limits.h so the build will not use the one provided by the host distro:

touch /tools/include/limits.h

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

AR=ar LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
  ../gcc-4.6.0/configure --prefix=/cross-tools \
  --build=${CLFS_HOST} --host=${CLFS_HOST} --target=${CLFS_TARGET} \
  --with-sysroot=${CLFS} --with-local-prefix=/tools --disable-nls \
  --disable-shared --with-mpfr=/cross-tools --with-gmp=/cross-tools \
  --with-ppl=/cross-tools --with-cloog=/cross-tools \
  --without-headers --with-newlib --disable-decimal-float \
  --disable-libgomp --disable-libmudflap --disable-libssp \
  --disable-threads --enable-languages=c --disable-multilib

The meaning of the configure options:

--prefix=/cross-tools

This tells the configure script to prepare to install the package in the /cross-tools directory.

--host=${CLFS_HOST}

When used with --target, this creates a cross-architecture executable that creates files for ${CLFS_TARGET} but runs on ${CLFS_HOST}.

--target=${CLFS_TARGET}

When used with --host, this creates a cross-architecture executable that creates files for ${CLFS_TARGET} but runs on ${CLFS_HOST}.

--with-sysroot=${CLFS}

Tells GCC to concider ${CLFS} as the root file system.

--with-local-prefix=/tools

The purpose of this switch is to remove /usr/local/include from gcc's include search path. This is not absolutely essential, however, it helps to minimize the influence of the host system.

--disable-nls

This disables internationalization as i18n is not needed for the cross-compile tools.

--disable-shared

Disables the creation of the shared libraries.

--without-headers

Disables GCC from using the target's Libc when cross compiling.

--with-newlib

Tells GCC that the target libc will use 'newlib'.

--disable-decimal-float

Disables support for the C decimal floating point extension.

--disable-libgomp

Disables the creation of runtime libraries used by GOMP.

--disable-libmudflap

Disables the creation of runtime libaries used by libmudflap.

--disable-libssp

Disables the use of Stack Smashing Protection for runtime libraries.

--disable-threads

This will prevent GCC from looking for the multi-thread include files, since they haven't been created for this architecture yet. GCC will be able to find the multi-thread information after the Glibc headers are created.

--enable-languages=c

This option ensures that only the C compiler is built.

Continue with compiling the package:

make all-gcc all-target-libgcc

Install the package:

make install-gcc install-target-libgcc

Details on this package are located in Section 10.16.2, “Contents of GCC.”

5.15. EGLIBC-2.13

The EGLIBC package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

5.15.1. Installation of EGLIBC

It should be noted that compiling EGLIBC in any way other than the method suggested in this book puts the stability of the system at risk.

Disable linking to libgcc_eh:

cp -v Makeconfig{,.orig}
sed -e 's/-lgcc_eh//g' Makeconfig.orig > Makeconfig

The EGLIBC documentation recommends building EGLIBC outside of the source directory in a dedicated build directory:

mkdir -v ../eglibc-build
cd ../eglibc-build

The following lines need to be added to config.cache for EGLIBC to support NPTL:

cat > config.cache << "EOF"
libc_cv_forced_unwind=yes
libc_cv_c_cleanup=yes
libc_cv_ppc_machine=yes
libc_cv_gnu89_inline=yes
libc_cv_ssp=no
EOF

Prepare EGLIBC for compilation:

BUILD_CC="gcc" CC="${CLFS_TARGET}-gcc" \
    AR="${CLFS_TARGET}-ar" RANLIB="${CLFS_TARGET}-ranlib" \
    ../eglibc-2.13/configure --prefix=/tools \
    --host=${CLFS_TARGET} --build=${CLFS_HOST} \
    --disable-profile --enable-add-ons \
    --with-tls --enable-kernel=2.6.0 --with-__thread \
    --with-binutils=/cross-tools/bin --with-headers=/tools/include \
    --cache-file=config.cache

The meaning of the new configure options:

BUILD_CC="gcc"

This sets EGLIBC to use the current compiler on our system. This is used to create the tools EGLIBC uses during its build.

CC="${CLFS_TARGET}-gcc"

This forces EGLIBC to use the GCC compiler that we made for our target architecture.

AR="${CLFS_TARGET}-ar"

This forces EGLIBC to use the ar utility we made for our target architecture.

RANLIB="${CLFS_TARGET}-ranlib"

This forces EGLIBC to use the ranlib utility we made for our target architecture.

--disable-profile

This builds the libraries without profiling information. Omit this option if profiling on the temporary tools is necessary.

--enable-add-ons

This tells EGLIBC to utilize all add-ons that are available.

--with-tls

This tells EGLIBC to use Thread Local Storage.

--enable-kernel=2.6.0

This tells EGLIBC to compile the library with support for 2.6.x Linux kernels.

--with-__thread

This tells EGLIBC to use use the __thread for libc and libpthread builds.

--with-binutils=/cross-tools/bin

This tells EGLIBC to use the Binutils that are specific to our target architecture.

--with-headers=/tools/include

This tells EGLIBC to compile itself against the headers recently installed to the /tools directory, so that it knows exactly what features the kernel has and can optimize itself accordingly.

--cache-file=config.cache

This tells EGLIBC to utilize a premade cache file.

During this stage the following warning might appear:

configure: WARNING:
*** These auxiliary programs are missing or
*** incompatible versions: msgfmt
*** some features will be disabled.
*** Check the INSTALL file for required versions.

The missing or incompatible msgfmt program is generally harmless. This msgfmt program is part of the Gettext package which the host distribution should provide.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.7.5, “Contents of EGLIBC.”

5.16. Cross GCC-4.6.0 - Final

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

5.16.1. Installation of GCC Cross Compiler

The following patch contains a number of updates to the 4.6.0 branch by the GCC developers:

patch -Np1 -i ../gcc-4.6.0-branch_update-1.patch

Make a couple of essential adjustments to the specs file to ensure GCC uses our build environment:

patch -Np1 -i ../gcc-4.6.0-specs-1.patch

Change the StartFile Spec and Standard Include Dir so that GCC looks in /tools:

echo -en '#undef STANDARD_INCLUDE_DIR\n#define STANDARD_INCLUDE_DIR "/tools/include/"\n\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_1\n#define STANDARD_STARTFILE_PREFIX_1 "/tools/lib/"\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_2\n#define STANDARD_STARTFILE_PREFIX_2 ""\n' >> gcc/config/rs6000/sysv4.h

Now alter gcc's c preprocessor's default include search path to use /tools only:

cp -v gcc/Makefile.in{,.orig}
sed -e "s@\(^CROSS_SYSTEM_HEADER_DIR =\).*@\1 /tools/include@g" \
    gcc/Makefile.in.orig > gcc/Makefile.in

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

AR=ar LDFLAGS="-Wl,-rpath,/cross-tools/lib" \
  ../gcc-4.6.0/configure --prefix=/cross-tools \
  --build=${CLFS_HOST} --target=${CLFS_TARGET} --host=${CLFS_HOST} \
  --with-sysroot=${CLFS} --with-local-prefix=/tools --disable-nls \
  --enable-shared --enable-languages=c,c++ --enable-__cxa_atexit \
  --with-mpfr=/cross-tools --with-gmp=/cross-tools --enable-c99 \
  --with-ppl=/cross-tools --with-cloog=/cross-tools \
  --enable-long-long --enable-threads=posix --disable-multilib

The meaning of the new configure options:

--enable-languages=c,c++

This option ensures that only the C and C++ compilers are built.

--enable-__cxa_atexit

This option allows use of __cxa_atexit, rather than atexit, to register C++ destructors for local statics and global objects and is essential for fully standards-compliant handling of destructors. It also affects the C++ ABI and therefore results in C++ shared libraries and C++ programs that are interoperable with other Linux distributions.

--enable-c99

Enable C99 support for C programs.

--enable-long-long

Enables long long support in the compiler.

--enable-threads=posix

This enables C++ exception handling for multi-threaded code.

Continue with compiling the package:

make AS_FOR_TARGET="${CLFS_TARGET}-as" \
    LD_FOR_TARGET="${CLFS_TARGET}-ld"

Install the package:

make install

Details on this package are located in Section 10.16.2, “Contents of GCC.”

Part IV. Building the Basic Tools

Chapter 6. Constructing a Temporary System

6.1. Introduction

This chapter shows how to compile and install a minimal Linux system. This system will contain just enough tools to start constructing the final CLFS system in Installing Basic System Software and allow a working environment with more user convenience than a minimum environment would.

The tools in this chapter are cross-compiled using the toolchain in /cross-tools and will be installed under the ${CLFS}/tools directory to keep them separate from the files installed in Installing Basic System Software and the host production directories. Since the packages compiled here are temporary, we do not want them to pollute the soon-to-be CLFS system.

Check one last time that the CLFS environment variable is set up properly:

echo ${CLFS}

Make sure the output shows the path to the CLFS partition's mount point, which is /mnt/clfs, using our example.

During this section of the build you will see several WARNING messages like the one below. It is safe to ignore these messages.

configure: WARNING: If you wanted to set the --build type, don't use --host.
    If a cross compiler is detected then cross compile mode will be used.

6.2. Build Variables

Setup target-specific variables for the compiler and linkers:

export CC="${CLFS_TARGET}-gcc"
export CXX="${CLFS_TARGET}-g++"
export AR="${CLFS_TARGET}-ar"
export AS="${CLFS_TARGET}-as"
export RANLIB="${CLFS_TARGET}-ranlib"
export LD="${CLFS_TARGET}-ld"
export STRIP="${CLFS_TARGET}-strip"

Then add the build variables to ~/.bashrc to prevent issues if you stop and come back later:

echo export CC=\""${CC}\"" >> ~/.bashrc
echo export CXX=\""${CXX}\"" >> ~/.bashrc
echo export AR=\""${AR}\"" >> ~/.bashrc
echo export AS=\""${AS}\"" >> ~/.bashrc
echo export RANLIB=\""${RANLIB}\"" >> ~/.bashrc
echo export LD=\""${LD}\"" >> ~/.bashrc
echo export STRIP=\""${STRIP}\"" >> ~/.bashrc

6.3. GMP-5.0.2

GMP is a library for arithmetic on arbitrary precision integers, rational numbers, and floating-point numbers.

6.3.1. Installation of GMP

Prepare GMP for compilation:

HOST_CC=gcc CPPFLAGS=-fexceptions ./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --enable-cxx

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.9.2, “Contents of GMP.”

6.4. MPFR-3.0.1

The MPFR library is a C library for multiple-precision floating-point computations with correct rounding.

6.4.1. Installation of MPFR

Prepare MPFR for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --enable-shared --with-gmp=/tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.10.2, “Contents of MPFR.”

6.5. MPC-0.9

MPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result.

6.5.1. Installation of MPC

Prepare MPC for compilation:

EGREP="grep -E" ./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.11.2, “Contents of MPC.”

6.6. PPL-0.11.2

The Parma Polyhedra Library (PPL) provides numerical abstractions especially targeted at applications in the field of analysis and verification of complex systems. CLooG-PPL requires this library.

6.6.1. Installation of PPL

Prepare PPL for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --enable-interfaces="c,cxx" --enable-shared --disable-optimization \
    --with-libgmp-prefix=/tools --with-libgmpxx-prefix=/tools

When PPL is cross-compiled, it does not check whether GMP was compiled with support for exceptions, and simply assumes it was not. This assumption is incorrect, so we will fix that:

echo '#define PPL_GMP_SUPPORTS_EXCEPTIONS 1' >> confdefs.h

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.12.2, “Contents of PPL.”

6.7. CLooG-PPL 0.15.11

CLooG-PPL is a library to generate code for scanning Z-polyhedra. In other words, it finds code that reaches each integral point of one or more parameterized polyhedra. GCC links with this library in order to enable the new loop generation code known as Graphite.

6.7.1. Installation of CLooG-PPL

The following prevents the configure script from setting LD_LIBRARY_PATH when it finds PPL. This will prevent any conflicts with libraries from the host system:

cp -v configure{,.orig}
sed -e "/LD_LIBRARY_PATH=/d" \
    configure.orig > configure

Prepare CLooG-PPL for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} --with-bits=gmp \
    --with-ppl=/tools --with-gmp=/tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.13.2, “Contents of CLooG-PPL.”

6.8. Zlib-1.2.5

The Zlib package contains compression and decompression routines used by some programs.

6.8.1. Installation of Zlib

Prepare Zlib for compilation:

./configure --prefix=/tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.14.2, “Contents of Zlib.”

6.9. Binutils-2.21.1a

The Binutils package contains a linker, an assembler, and other tools for handling object files.

6.9.1. Installation of Binutils

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build directory:

mkdir -v ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

../binutils-2.21.1/configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} --target=${CLFS_TARGET} \
    --with-lib-path=/tools/lib --disable-nls --enable-shared \
    --disable-multilib

Compile the package:

make configure-host
make

Install the package:

make install

Details on this package are located in Section 10.15.2, “Contents of Binutils.”

6.10. GCC-4.6.0

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

6.10.1. Installation of GCC

The following patch contains a number of updates to the 4.6.0 branch by the GCC developers:

patch -Np1 -i ../gcc-4.6.0-branch_update-1.patch

Make a couple of essential adjustments to the specs file to ensure GCC uses our build environment:

patch -Np1 -i ../gcc-4.6.0-specs-1.patch

Change the StartFile Spec and Standard Include Dir so that GCC looks in /tools:

echo -en '#undef STANDARD_INCLUDE_DIR\n#define STANDARD_INCLUDE_DIR "/tools/include/"\n\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_1\n#define STANDARD_STARTFILE_PREFIX_1 "/tools/lib/"\n' >> gcc/config/rs6000/sysv4.h
echo -en '\n#undef STANDARD_STARTFILE_PREFIX_2\n#define STANDARD_STARTFILE_PREFIX_2 ""\n' >> gcc/config/rs6000/sysv4.h

Also, we need to set the directory searched by the fixincludes process for system headers, so it won't look at the host's headers:

cp -v gcc/Makefile.in{,.orig}
sed -e 's@\(^NATIVE_SYSTEM_HEADER_DIR =\).*@\1 /tools/include@g' \
    gcc/Makefile.in.orig > gcc/Makefile.in

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Before starting to build GCC, remember to unset any environment variables that override the default optimization flags.

Prepare GCC for compilation:

../gcc-4.6.0/configure --prefix=/tools \
  --build=${CLFS_HOST} --host=${CLFS_TARGET} --target=${CLFS_TARGET} \
  --with-local-prefix=/tools --enable-long-long --enable-c99 \
  --enable-shared --enable-threads=posix --enable-__cxa_atexit \
  --disable-nls --enable-languages=c,c++ --disable-libstdcxx-pch \
  --disable-multilib

The meaning of the new configure options:

--disable-libstdcxx-pch

Do not build the pre-compiled header (PCH) for libstdc++. It takes up a lot of space, and we have no use for it.

The following will prevent GCC from looking in the wrong directories for headers and libraries:

cp -v Makefile{,.orig}
sed "/^HOST_\(GMP\|PPL\|CLOOG\)\(LIBS\|INC\)/s:-[IL]/\(lib\|include\)::" \
    Makefile.orig > Makefile

Compile the package:

make AS_FOR_TARGET="${AS}" \
    LD_FOR_TARGET="${LD}"

Install the package:

make install

Details on this package are located in Section 10.16.2, “Contents of GCC.”

6.11. Ncurses-5.9

The Ncurses package contains libraries for terminal-independent handling of character screens.

6.11.1. Installation of Ncurses

The following patch fixes an issue with some Bash versions:

patch -Np1 -i ../ncurses-5.9-bash_fix-1.patch

Prepare Ncurses for compilation:

./configure --prefix=/tools --with-shared \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --without-debug --without-ada \
    --enable-overwrite --with-build-cc=gcc

The meaning of the configure options:

--with-shared

This tells Ncurses to create a shared library.

--without-debug

This tells Ncurses not to build with debug information.

--without-ada

This ensures that Ncurses does not build support for the Ada compiler which may be present on the host but will not be available when building the final system.

--enable-overwrite

This tells Ncurses to install its header files into /tools/include, instead of /tools/include/ncurses, to ensure that other packages can find the Ncurses headers successfully.

--with-build-cc=gcc

This tells Ncurses what type of compiler we are using.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.18.2, “Contents of Ncurses.”

6.12. Bash-4.2

The Bash package contains the Bourne-Again SHell.

6.12.1. Installation of Bash

The following patch contains updates from the maintainer. The maintainer of Bash only releases these patches to fix serious issues:

patch -Np1 -i ../bash-4.2-branch_update-2.patch

When Bash is cross-compiled, it cannot test for the presence of named pipes, among other things. If you used su to become an unprivileged user, this combination will cause Bash to build without process substitution, which will break one of the C++ test scripts in eglibc. The following prevents future problems by skipping the check for named pipes, as well as other tests that can not run while cross-compiling or that do not run properly:

cat > config.cache << "EOF"
ac_cv_func_mmap_fixed_mapped=yes
ac_cv_func_strcoll_works=yes
ac_cv_func_working_mktime=yes
bash_cv_func_sigsetjmp=present
bash_cv_getcwd_malloc=yes
bash_cv_job_control_missing=present
bash_cv_printf_a_format=yes
bash_cv_sys_named_pipes=present
bash_cv_ulimit_maxfds=yes
bash_cv_under_sys_siglist=yes
bash_cv_unusable_rtsigs=no
gt_cv_int_divbyzero_sigfpe=yes
EOF

Prepare Bash for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --without-bash-malloc --cache-file=config.cache

The meaning of the configure option:

--without-bash-malloc

This option turns off the use of Bash's memory allocation (malloc) function which is known to cause segmentation faults. By turning this option off, Bash will use the malloc functions from Glibc which are more stable.

Compile the package:

make

Install the package:

make install

Make a link for programs that use sh for a shell:

ln -sv bash /tools/bin/sh

Details on this package are located in Section 10.35.2, “Contents of Bash.”

6.13. Bison-2.5

The Bison package contains a parser generator.

6.13.1. Installation of Bison

Prepare Bison for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.26.2, “Contents of Bison.”

6.14. Bzip2-1.0.6

The Bzip2 package contains programs for compressing and decompressing files. Compressing text files with bzip2 yields a much better compression percentage than with the traditional gzip.

6.14.1. Installation of Bzip2

Bzip2's default Makefile target automatically runs the testsuite as well. Disable the tests since they won't work on a multi-architecture build:

cp -v Makefile{,.orig}
sed -e 's@^\(all:.*\) test@\1@g' Makefile.orig > Makefile

The Bzip2 package does not contain a configure script. Compile it with:

make CC="${CC}" AR="${AR}" RANLIB="${RANLIB}"

Install the package:

make PREFIX=/tools install

Details on this package are located in Section 10.36.2, “Contents of Bzip2.”

6.15. Coreutils-8.12

The Coreutils package contains utilities for showing and setting the basic system characteristics.

6.15.1. Installation of Coreutils

The following command updates the timestamps on the uname and hostname man pages so that the Makefile does not attempt to regenerate them:

touch man/uname.1 man/hostname.1

Configure can not properly determine how to get free space when cross-compiling - as a result, the df program will not be built. Add the following entries to config.cache to correct this, and fix various cross-compiling issues:

cat > config.cache << EOF
fu_cv_sys_stat_statfs2_bsize=yes
gl_cv_func_working_mkstemp=yes
EOF

Prepare Coreutils for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --enable-install-program=hostname --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.23.2, “Contents of Coreutils.”

6.16. Diffutils-3.0

The Diffutils package contains programs that show the differences between files or directories.

6.16.1. Installation of Diffutils

Prepare Diffutils for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.37.2, “Contents of Diffutils.”

6.17. Findutils-4.4.2

The Findutils package contains programs to find files. These programs are provided to recursively search through a directory tree and to create, maintain, and search a database (often faster than the recursive find, but unreliable if the database has not been recently updated).

6.17.1. Installation of Findutils

The following cache entries set the values for tests that do not run while cross-compiling:

echo "gl_cv_func_wcwidth_works=yes" > config.cache
echo "ac_cv_func_fnmatch_gnu=yes" >> config.cache

Prepare Findutils for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.39.2, “Contents of Findutils.”

6.18. File-5.07

The File package contains a utility for determining the type of a given file or files.

6.18.1. Installation of File

Prepare File for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.38.2, “Contents of File.”

6.19. Flex-2.5.35

The Flex package contains a utility for generating programs that recognize patterns in text.

6.19.1. Installation of Flex

The following patch contains fixes to generate proper GCC 4.4.x code:

patch -Np1 -i ../flex-2.5.35-gcc44-1.patch

When cross compiling, the configure script does not determine the correct values for the following. Set the values manually:

cat > config.cache << EOF
ac_cv_func_malloc_0_nonnull=yes
ac_cv_func_realloc_0_nonnull=yes
EOF

Prepare Flex for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.29.2, “Contents of Flex.”

6.20. Gawk-3.1.8

The Gawk package contains programs for manipulating text files.

6.20.1. Installation of Gawk

Prepare Gawk for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.40.2, “Contents of Gawk.”

6.21. Gettext-0.18.1.1

The Gettext package contains utilities for internationalization and localization. These allow programs to be compiled with NLS (Native Language Support), enabling them to output messages in the user's native language.

6.21.1. Installation of Gettext

Only the programs in the gettext-tools directory need to be installed for the temp-system:

cd gettext-tools

When cross-compiling the Gettext configure script assumes we don't have a working wcwidth when we do. The following will fix possible compilation errors because of this assumption:

echo "gl_cv_func_wcwidth_works=yes" > config.cache

Prepare Gettext for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --disable-shared --cache-file=config.cache

The meaning of the configure options:

--disable-shared

This tells Gettext not to create a shared library.

Compile the package:

make -C gnulib-lib
make -C src msgfmt

Install the msgfmt binary:

cp -v src/msgfmt /tools/bin

Details on this package are located in Section 10.41.2, “Contents of Gettext.”

6.22. Grep-2.8

The Grep package contains programs for searching through files.

6.22.1. Installation of Grep

When cross compiling, the configure script does not determine the correct values for the following. Set the values manually:

cat > config.cache << EOF
ac_cv_func_malloc_0_nonnull=yes
ac_cv_func_realloc_0_nonnull=yes
EOF

Prepare Grep for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --disable-perl-regexp --without-included-regex \
    --cache-file=config.cache

The meaning of the configure options:

--disable-perl-regexp

This ensures that the grep program does not get linked against a Perl Compatible Regular Expression (PCRE) library that may be present on the host but will not be available when building the final system.

--without-included-regex

When cross-compiling, Grep's configure assumes there is no usable regex.h installed and instead uses the one included with Grep. This switch forces the use of the regex functions from EGLIBC.

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.42.2, “Contents of Grep.”

6.23. Gzip-1.4

The Gzip package contains programs for compressing and decompressing files.

6.23.1. Installation of Gzip

Prepare Gzip for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.44.2, “Contents of Gzip.”

6.24. M4-1.4.16

The M4 package contains a macro processor.

6.24.1. Installation of M4

Configure can not properly determine the results of the following tests:

cat > config.cache << EOF
gl_cv_func_btowc_eof=yes
gl_cv_func_mbrtowc_incomplete_state=yes
gl_cv_func_mbrtowc_sanitycheck=yes
gl_cv_func_mbrtowc_null_arg=yes
gl_cv_func_mbrtowc_retval=yes
gl_cv_func_mbrtowc_nul_retval=yes
gl_cv_func_wcrtomb_retval=yes
gl_cv_func_wctob_works=yes
EOF

Prepare M4 for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.25.2, “Contents of M4.”

6.25. Make-3.82

The Make package contains a program for compiling packages.

6.25.1. Installation of Make

Prepare Make for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.48.2, “Contents of Make.”

6.26. Patch-2.6.1

The Patch package contains a program for modifying or creating files by applying a “patch” file typically created by the diff program.

6.26.1. Installation of Patch

When cross-compiling configure cannot properly detect the existance of certain features. Override this behaviour:

echo "ac_cv_func_strnlen_working=yes" > config.cache

Prepare Patch for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.52.2, “Contents of Patch.”

6.27. Sed-4.2.1

The Sed package contains a stream editor.

6.27.1. Installation of Sed

Prepare Sed for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.17.2, “Contents of Sed.”

6.28. Tar-1.26

The Tar package contains an archiving program.

6.28.1. Installation of Tar

Configure can not properly determine the results of a few tests. Set them manually:

cat > config.cache << EOF
gl_cv_func_wcwidth_works=yes
gl_cv_func_btowc_eof=yes
ac_cv_func_malloc_0_nonnull=yes
ac_cv_func_realloc_0_nonnull=yes
gl_cv_func_mbrtowc_incomplete_state=yes
gl_cv_func_mbrtowc_nul_retval=yes
gl_cv_func_mbrtowc_null_arg=yes
gl_cv_func_mbrtowc_retval=yes
gl_cv_func_wcrtomb_retval=yes
EOF

Prepare Tar for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --cache-file=config.cache

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.59.2, “Contents of Tar.”

6.29. Texinfo-4.13a

The Texinfo package contains programs for reading, writing, and converting info pages.

6.29.1. Installation of Texinfo

Prepare Texinfo for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make -C tools/gnulib/lib
make -C tools
make

Install the package:

make install

Details on this package are located in Section 10.60.2, “Contents of Texinfo.”

6.30. Vim-7.3

The Vim package contains a powerful text editor.

6.30.1. Installation of VIM

The following patch merges all updates from the 7.3 Branch from the Vim developers:

patch -Np1 -i ../vim-7.3-branch_update-2.patch

The configure script has a single hard coded test that cannot be bypassed with a cache entry. Disable this test with the following command:

sed -i "/using uint32_t/s/as_fn_error/#&/" src/auto/configure

The configure script is full of logic that aborts at the first sign of cross compiling. Work around this by setting the cached values of several tests with the following command:

cat > src/auto/config.cache << "EOF"
vim_cv_getcwd_broken=no
vim_cv_memmove_handles_overlap=yes
vim_cv_stat_ignores_slash=no
vim_cv_terminfo=yes
vim_cv_tgent=zero
vim_cv_toupper_broken=no
vim_cv_tty_group=world
ac_cv_sizeof_int=4
ac_cv_sizeof_long=4
ac_cv_sizeof_time_t=4
ac_cv_sizeof_off_t=4
EOF

Change the default location of the vimrc configuration file to /tools/etc:

echo '#define SYS_VIMRC_FILE "/tools/etc/vimrc"' >> src/feature.h

Prepare Vim for compilation:

./configure \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --prefix=/tools --enable-multibyte --enable-gui=no \
    --disable-gtktest --disable-xim --with-features=normal \
    --disable-gpm --without-x --disable-netbeans \
    --with-tlib=ncurses

Compile the package:

make

Install the package:

make install

Many users are accustomed to using vi instead of vim. Some programs, such as vigr and vipw, also use vi. Create a symlink to permit execution of vim when users habitually enter vi and allow programs that use vi to work:

ln -sv vim /tools/bin/vi

Create a temporary vimrc to make it function more the way you may expect it to. This is explained more in the final system:

cat > /tools/etc/vimrc << "EOF"
" Begin /etc/vimrc

set nocompatible
set backspace=2
set ruler
syntax on

" End /etc/vimrc
EOF

Details on this package are located in Section 10.62.3, “Contents of Vim.”

6.31. XZ Utils-5.0.2

The XZ-Utils package contains programs for compressing and decompressing files. Compressing text files with XZ-Utils yields a much better compression percentage than with the traditional gzip.

6.31.1. Installation of XZ-Utils

Prepare XZ-Utils for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.49.2, “Contents of XZ-Utils.”

6.32. To Boot or to Chroot?

There are two different ways you can proceed from this point to build the final system. You can build a kernel, a bootloader, and a few other utilities, boot into the temporary system, and build the rest there. Alternatively, you can chroot into the temporary system.

The boot method is needed when you are building on a different architecture. For example, if you are building a PowerPC system from an x86, you can't chroot. The chroot method is for when you are building on the same architecture. If you are building on, and for, an x86 system, you can simply chroot. The rule of thumb here is if the architectures match and you are running the same series kernel you can just chroot. If you aren't running the same series kernel, or are wanting to run a different ABI, you will need to use the boot option.

If you are in any doubt about this, you can try the following commands to see if you can chroot:

/tools/lib/libc.so.6
/tools/bin/gcc -v

If either of these commands fail, you will have to follow the boot method.

To chroot, you will also need a Linux Kernel-2.6.x (having been compiled with GCC-3.0 or greater). The reason for the kernel version requirement is that, without it, thread-local storage support in Binutils will not be built and the Native POSIX Threading Library (NPTL) test suite will segfault.

To check your kernel version, run cat /proc/version - if it does not say that you are running a 2.6.2 or later Linux kernel, compiled with GCC 3.0 or later, you cannot chroot.

For the boot method, follow If You Are Going to Boot.

For the chroot method, follow If You Are Going to Chroot.

Chapter 7. If You Are Going to Boot

7.1. Introduction

This chapter shows how to complete the build of temporary tools to create a minimal system that will be used to boot the target machine and to build the final system packages.

There are a few additional packages that will need to be installed to allow you to boot the minimal system. Some of these packages will be installed onto root or in /usr on the CLFS partition (${CLFS}/bin, ${CLFS}/usr/bin, etc...), rather than /tools, using the "DESTDIR" option with make. This will require the clfs user to have write access to the rest of the CLFS partition, so you will need to temporarily change the ownership of ${CLFS} to the clfs user. Run the following command as root:

chown -v clfs ${CLFS}

7.2. Creating Directories

It is time to create some structure in the CLFS file system. Create a standard directory tree by issuing the following commands:

mkdir -pv ${CLFS}/{bin,boot,dev,{etc/,}opt,home,lib,mnt}
mkdir -pv ${CLFS}/{proc,media/{floppy,cdrom},sbin,srv,sys}
mkdir -pv ${CLFS}/var/{lock,log,mail,run,spool}
mkdir -pv ${CLFS}/var/{opt,cache,lib/{misc,locate},local}
install -dv -m 0750 ${CLFS}/root
install -dv -m 1777 ${CLFS}{/var,}/tmp
mkdir -pv ${CLFS}/usr/{,local/}{bin,include,lib,sbin,src}
mkdir -pv ${CLFS}/usr/{,local/}share/{doc,info,locale,man}
mkdir -pv ${CLFS}/usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -pv ${CLFS}/usr/{,local/}share/man/man{1,2,3,4,5,6,7,8}
for dir in ${CLFS}/usr{,/local}; do
  ln -sv share/{man,doc,info} $dir
done

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the commands above, two changes are made—one to the home directory of user root, and another to the directories for temporary files.

The first mode change ensures that not just anybody can enter the /root directory—the same as a normal user would do with his or her home directory. The second mode change makes sure that any user can write to the /tmp and /var/tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called “sticky bit,” the highest bit (1) in the 1777 bit mask.

7.2.1. FHS Compliance Note

The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at http://www.pathname.com/fhs/). In addition to the tree created above, this standard stipulates the existence of /usr/local/games and /usr/share/games. The FHS is not precise as to the structure of the /usr/local/share subdirectory, so we create only the directories that are needed. However, feel free to create these directories if you prefer to conform more strictly to the FHS.

7.3. Creating Essential Symlinks

Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs, create a number of symbolic links which will be replaced by real files throughout the course of the next chapter after the software has been installed.

ln -sv /tools/bin/{bash,cat,echo,grep,login,pwd,sleep,stty} ${CLFS}/bin
ln -sv /tools/sbin/{agetty,blkid} ${CLFS}/sbin
ln -sv /tools/bin/file ${CLFS}/usr/bin
ln -sv /tools/lib/libgcc_s.so{,.1} ${CLFS}/usr/lib
ln -sv /tools/lib/libstd*so* ${CLFS}/usr/lib
ln -sv bash ${CLFS}/bin/sh

7.4. Util-linux-2.19.1

The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.

7.4.1. Installation of Util-linux

Prepare Util-linux for compilation:

PKG_CONFIG=true \
  ./configure --prefix=/tools --exec-prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --enable-login-utils --disable-makeinstall-chown

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.21.3, “Contents of Util-linux.”

7.5. E2fsprogs-1.41.14

The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4 journaling file systems.

7.5.1. Installation of E2fsprogs

The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd build

Prepare E2fsprogs for compilation:

PKG_CONFIG=true \
  ../configure --prefix=/tools \
    --enable-elf-shlibs --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --disable-libblkid --disable-libuuid --disable-fsck \
    --disable-uuidd

The meaning of the configure options:

--enable-elf-shlibs

This creates the shared libraries which some programs in this package use.

Compile the package:

make LIBUUID="-luuid" STATIC_LIBUUID="-luuid" \
    LIBBLKID="-lblkid" STATIC_LIBBLKID="-lblkid"

Install the binaries, documentation and shared libraries:

make install

Install the static libraries and headers:

make install-libs

Create needed symlinks for a bootable system:

ln -sv /tools/sbin/{fsck.ext2,fsck.ext3,fsck.ext4,e2fsck} ${CLFS}/sbin

Details on this package are located in Section 10.22.2, “Contents of E2fsprogs.”

7.6. Sysvinit-2.88dsf

The Sysvinit package contains programs for controlling the startup, running, and shutdown of the system.

7.6.1. Installation of Sysvinit

The following modifications help locate files specific to this perticular build:

cp -v src/Makefile{,.orig}
sed -e 's,/usr/lib,/tools/lib,g' \
    src/Makefile.orig > src/Makefile

Compile the package:

make -C src clobber
make -C src CC="${CC}"

Install the package:

make -C src ROOT=${CLFS} install

7.6.2. Configuring Sysvinit

Create a new file ${CLFS}/etc/inittab by running the following:

cat > ${CLFS}/etc/inittab << "EOF"
# Begin /etc/inittab

id:3:initdefault:

si::sysinit:/etc/rc.d/init.d/rc sysinit

l0:0:wait:/etc/rc.d/init.d/rc 0
l1:S1:wait:/etc/rc.d/init.d/rc 1
l2:2:wait:/etc/rc.d/init.d/rc 2
l3:3:wait:/etc/rc.d/init.d/rc 3
l4:4:wait:/etc/rc.d/init.d/rc 4
l5:5:wait:/etc/rc.d/init.d/rc 5
l6:6:wait:/etc/rc.d/init.d/rc 6

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

su:S016:once:/sbin/sulogin

EOF

The following command adds the standard virtual terminals to ${CLFS}/etc/inittab. If your system only has a serial console skip the following command:

cat >> ${CLFS}/etc/inittab << "EOF"
1:2345:respawn:/sbin/agetty -I '\033(K' tty1 9600
2:2345:respawn:/sbin/agetty -I '\033(K' tty2 9600
3:2345:respawn:/sbin/agetty -I '\033(K' tty3 9600
4:2345:respawn:/sbin/agetty -I '\033(K' tty4 9600
5:2345:respawn:/sbin/agetty -I '\033(K' tty5 9600
6:2345:respawn:/sbin/agetty -I '\033(K' tty6 9600

EOF

If your system has a serial console, run the following command to add the entry to ${CLFS}/etc/inittab.

cat >> ${CLFS}/etc/inittab << "EOF"
c0:12345:respawn:/sbin/agetty 115200 ttyS0 vt100

EOF

Finally, add the end line to ${CLFS}/etc/inittab.

cat >> ${CLFS}/etc/inittab << "EOF"
# End /etc/inittab
EOF

Details on this package are located in Section 10.58.3, “Contents of Sysvinit.”

7.7. Module-Init-Tools-3.12

The Module-Init-Tools package contains programs for handling kernel modules in Linux kernels greater than or equal to version 2.5.47.

7.7.1. Installation of Module-Init-Tools

Prepare Module-Init-Tools for compilation:

./configure --prefix=/usr \
    --bindir=/bin --sbindir=/sbin \
    --build=${CLFS_HOST} --host=${CLFS_TARGET}

Compile the package:

make DOCBOOKTOMAN=true

Install the package:

make DESTDIR=${CLFS} install

Details on this package are located in Section 10.51.2, “Contents of Module-Init-Tools.”

7.8. Udev-168

The Udev package contains programs for dynamic creation of device nodes.

7.8.1. Installation of Udev

Prepare Udev for compilation:

LIBS="-lpthread" ./configure --prefix=/usr \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --exec-prefix="" --sysconfdir=/etc \
    --libexecdir=/lib/udev --libdir=/usr/lib \
    --disable-extras --disable-introspection

Compile the package:

make

Install the package:

make DESTDIR=${CLFS} install

Details on this package are located in Section 10.61.2, “Contents of Udev.”

7.9. Creating the passwd, group, and log Files

In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries in the /etc/passwd and /etc/group files.

Create the ${CLFS}/etc/passwd file by running the following command:

cat > ${CLFS}/etc/passwd << "EOF"
root::0:0:root:/root:/bin/bash
EOF

The actual password for root (the “::” used here is just a placeholder and allows you to login with no password) will be set later.

Additional users you may want to add:

bin:x:1:1:bin:/bin:/bin/false

Can be useful for compatibility with legacy applications.

daemon:x:2:6:daemon:/sbin:/bin/false

It is often recommended to use an unprivileged User ID/Group ID for daemons to run as, in order to limit their access to the system.

adm:x:3:16:adm:/var/adm:/bin/false

Was used for programs that performed administrative tasks.

lp:x:10:9:lp:/var/spool/lp:/bin/false

Used by programs for printing

mail:x:30:30:mail:/var/mail:/bin/false

Often used by email programs

news:x:31:31:news:/var/spool/news:/bin/false

Often used for network news servers

operator:x:50:0:operator:/root:/bin/bash

Often used to allow system operators to access the system

postmaster:x:51:30:postmaster:/var/spool/mail:/bin/false

Generally used as an account that receives all the information of troubles with the mail server

nobody:x:65534:65534:nobody:/:/bin/false

Used by NFS

Create the ${CLFS}/etc/group file by running the following command:

cat > ${CLFS}/etc/group << "EOF"
root:x:0:
bin:x:1:
sys:x:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
EOF

Additional groups you may want to add

adm:x:16:root,adm,daemon

All users in this group are allowed to do administrative tasks

console:x:17:

This group has direct access to the console

cdrw:x:18:

This group is allowed to use the CDRW drive

mail:x:30:mail

Used by MTAs (Mail Transport Agents)

news:x:31:news

Used by Network News Servers

users:x:1000:

The default GID used by shadow for new users

nogroup:x:65533:

This is a default group used by some programs that do not require a group

nobody:x:65534:

This is used by NFS

The created groups are not part of any standard—they are groups decided on in part by the requirements of the Udev configuration in the final system, and in part by common convention employed by a number of existing Linux distributions. The Linux Standard Base (LSB, available at http://www.linuxbase.org) recommends only that, besides the group “root” with a Group ID (GID) of 0, a group “bin” with a GID of 1 be present. All other group names and GIDs can be chosen freely by the system administrator since well-written programs do not depend on GID numbers, but rather use the group's name.

The login, agetty, and init programs (and others) use a number of log files to record information such as who was logged into the system and when. However, these programs will not write to the log files if they do not already exist. Initialize the log files and give them proper permissions:

touch ${CLFS}/var/run/utmp ${CLFS}/var/log/{btmp,lastlog,wtmp}
chmod -v 664 ${CLFS}/var/run/utmp ${CLFS}/var/log/lastlog
chmod -v 600 ${CLFS}/var/log/btmp

The /var/run/utmp file records the users that are currently logged in. The /var/log/wtmp file records all logins and logouts. The /var/log/lastlog file records when each user last logged in. The /var/log/btmp file records the bad login attempts.

7.10. Linux-2.6.39

The Linux package contains the Linux kernel.

7.10.1. Installation of the kernel

Warning

Here a temporary cross-compiled kernel will be built. When configuring it, select the minimal amount of options required to boot the target machine and build the final system. I.e., no support for sound, printers, etc. will be needed.

Also, try to avoid the use of modules if possible, and don't use the resulting kernel image for production systems.

Building the kernel involves a few steps—configuration, compilation, and installation. Read the README file in the kernel source tree for alternative methods to the way this book configures the kernel.

Prepare for compilation by running the following command:

make mrproper

This ensures that the kernel tree is absolutely clean. The kernel team recommends that this command be issued prior to each kernel compilation. Do not rely on the source tree being clean after un-tarring.

Configure the kernel via a menu-driven interface:

make ARCH=powerpc CROSS_COMPILE=${CLFS_TARGET}- menuconfig

Warning

Ensure you select all of the necessary mac drivers, particularly for ide and input.

Compile the kernel image and modules:

make ARCH=powerpc CROSS_COMPILE=${CLFS_TARGET}-

If the use of kernel modules can't be avoided, an /etc/modprobe.conf file may be needed. Information pertaining to modules and kernel configuration is located in the kernel documentation in the Documentation directory of the kernel sources tree. The modprobe.conf man page may also be of interest.

Be very careful when reading other documentation relating to kernel modules because it usually applies to 2.4.x kernels only. As far as we know, kernel configuration issues specific to Hotplug and Udev are not documented. The problem is that Udev will create a device node only if Hotplug or a user-written script inserts the corresponding module into the kernel, and not all modules are detectable by Hotplug. Note that statements like the one below in the /etc/modprobe.conf file do not work with Udev:

alias char-major-XXX some-module

Install the modules, if the kernel configuration uses them:

make ARCH=powerpc CROSS_COMPILE=${CLFS_TARGET}- \
   INSTALL_MOD_PATH=${CLFS} modules_install

After kernel compilation is complete, additional steps are required to complete the installation. Some files need to be copied to the ${CLFS}/boot directory.

Issue the following command to install the kernel:

cp -v vmlinux ${CLFS}/boot/clfskernel-2.6.39

System.map is a symbol file for the kernel. It maps the function entry points of every function in the kernel API, as well as the addresses of the kernel data structures for the running kernel. Issue the following command to install the map file:

cp -v System.map ${CLFS}/boot/System.map-2.6.39

The kernel configuration file .config produced by the make menuconfig step above contains all the configuration selections for the kernel that was just compiled. It is a good idea to keep this file for future reference:

cp -v .config ${CLFS}/boot/config-2.6.39

Details on this package are located in Section 13.3.2, “Contents of Linux.”

7.11. Hfsutils-3.2.6

The Hfsutils package contains a number of utilities for accessing files on hfs filesystems. It is needed to run ybin.

7.11.1. Installation of Hfsutils

If you have created, or will create, the ext2 filesystem on your Mac using ext2fsx you can jump ahead to Section 7.13, “Yaboot-1.3.17.”. The next three packages are for people who cannot do that.

The following patch contains fixes. One that fixes a missing errno.h, the other that allows HFSutils to recognize beyond 2gb devices:

patch -Np1 -i ../hfsutils-3.2.6-fixes-1.patch

Prepare Hfsutils for compilation:

CC="${CC}" ./configure --prefix=/tools

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.63.2, “Contents of Hfsutils.”

7.12. Powerpc-Utils_1.1.3

The Powerpc-Utils package contains a number of utilities for Power Macintoshes and other similar machines. Most of these utilities are now obsolete, but nvsetenv is needed by ybin to install the bootloader on an hfs partition.

7.12.1. Installation of Powerpc-Utils

This package, originally pmac-utils, has issues with NewWorld Macintoshes. The following patch fixes these issues and generally updates the package:

patch -Np1 -i ../powerpc-utils_1.1.3-fixes-2.patch

This package's Makefile has issues with cross-compiling. Fortunately, we only need one program and it is a simple task to compile it.

${CC} -o nvsetenv nvsetenv.c nwnvsetenv.c

Install the program:

install -v -m755 nvsetenv /tools/sbin

Details on this package are located in Section 10.65.2, “Contents of Powerpc-Utils.”

7.13. Yaboot-1.3.17

The Yaboot package contains a PowerPC Boot Loader for machines using Open Firmware such as NewWorld Macintoshes.

7.13.1. Installation of Yaboot

The following patch allows ofpath to use PATH_PREFIX like the other ybin scripts:

patch -Np1 -i ../yaboot-1.3.17-ofpath_path_prefix-1.patch

The Makefile is already set to do kernel-style cross-compiling, but it will try to use strip to strip the second-stage loader. It also tries to change user and group ownership for the installed files to root, which the clfs user cannot do. It will also fail due to a compile warning with the -Werror flag on. The following command fixes these issues:

cp -v Makefile{,.orig}
sed -e "s/\(strip \)/${CLFS_TARGET}-\1/" \
    -e 's/-o root -g root//' \
    -e 's/-Werror//' \
    Makefile.orig > Makefile

Compile the package:

make CROSS=${CLFS_TARGET}-

Install the package:

make CROSS=${CLFS_TARGET}- ROOT=/tools PREFIX="" install

Details on this package are located in Section 10.66.2, “Contents of Yaboot.”

7.14. Setting Up the Environment

The new instance of the shell that will start when the system is booted is a login shell, which will read .bash_profile file. Create the .bash_profile file now:

cat > ${CLFS}/root/.bash_profile << "EOF"
set +h
PS1='\u:\w\$ '
LC_ALL=POSIX
PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin:/tools/sbin
export LC_ALL PATH PS1
EOF

The LC_ALL variable controls the localization of certain programs, making their messages follow the conventions of a specified country. Setting LC_ALL to “POSIX” or “C” (the two are equivalent) ensures that everything will work as expected on your temporary system.

By putting /tools/bin and /tools/sbin at the end of the standard PATH, all the programs installed in Constructing a Temporary System are only picked up by the shell if they have not yet been built on the target system. This configuration forces use of the final system binaries as they are built over the temp-system, minimising the chance of final system programs being built against the temp-system.

7.15. Creating the /etc/fstab File

The /etc/fstab file is used by some programs to determine where file systems are to be mounted by default, which must be checked, and in which order. Create a new file systems table like this:

cat > ${CLFS}/etc/fstab << "EOF"
# Begin /etc/fstab

# file system  mount-point  type   options          dump  fsck
#                                                         order

/dev/[xxx]     /            [fff]  defaults         1     1
/dev/[yyy]     swap         swap   pri=1            0     0
proc           /proc        proc   defaults         0     0
sysfs          /sys         sysfs  defaults         0     0
devpts         /dev/pts     devpts gid=4,mode=620   0     0
shm            /dev/shm     tmpfs  defaults         0     0
# End /etc/fstab
EOF

Replace [xxx], [yyy], and [fff] with the values appropriate for the system, for example, hda2, hda5, and ext2. For details on the six fields in this file, see man 5 fstab.

The /dev/shm mount point for tmpfs is included to allow enabling POSIX-shared memory. The kernel must have the required support built into it for this to work (more about this is in the next section). Please note that very little software currently uses POSIX-shared memory. Therefore, consider the /dev/shm mount point optional. For more information, see Documentation/filesystems/tmpfs.txt in the kernel source tree.

7.16. Bootscripts for CLFS 1.2-pre11

The Bootscripts package contains a set of scripts to start/stop the CLFS system at bootup/shutdown.

7.16.1. Installation of Bootscripts

Install the package:

make DESTDIR=${CLFS} install-minimal

The setclock script reads the time from the hardware clock, also known as the BIOS or the Complementary Metal Oxide Semiconductor (CMOS) clock. If the hardware clock is set to UTC, this script will convert the hardware clock's time to the local time using the /etc/localtime file (which tells the hwclock program which timezone the user is in). There is no way to detect whether or not the hardware clock is set to UTC, so this needs to be configured manually.

If you do not know whether or not the hardware clock is set to UTC, you can find out after you have booted the new machine by running the hwclock --localtime --show command, and if necessary editing the /etc/sysconfig/clock script. The worst that will happen if you make a wrong guess here is that the time displayed will be wrong.

Change the value of the UTC variable below to a value of 0 (zero) if the hardware clock is not set to UTC time.

cat > ${CLFS}/etc/sysconfig/clock << "EOF"
# Begin /etc/sysconfig/clock

UTC=1

# End /etc/sysconfig/clock
EOF

Details on this package are located in Section 11.2.2, “Contents of Bootscripts.”

7.17. Populating /dev

7.17.1. Creating Initial Device Nodes

Note

The commands in the remainder of the book should be run as the root user. Check that ${CLFS} is set in the root user’s environment before proceeding.

When the kernel boots the system, it requires the presence of a few device nodes, in particular the console and null devices. The device nodes will be created on the hard disk so that they are available before udev has been started, and additionally when Linux is started in single user mode (hence the restrictive permissions on console). Create these by running the following commands:

mknod -m 600 ${CLFS}/dev/console c 5 1
mknod -m 666 ${CLFS}/dev/null c 1 3

Before udev starts a tmpfs filesystem is mounted over /dev and the previous entries are no-longer available. The folling command creates files that are copied over by the udev bootscript:

mknod -m 600 ${CLFS}/lib/udev/devices/console c 5 1
mknod -m 666 ${CLFS}/lib/udev/devices/null c 1 3

7.18. Changing Ownership

Currently, the ${CLFS} directory and all of its subdirectories are owned by the user clfs, a user that exists only on the host system. For security reasons, the ${CLFS} root directory and all of its subdirectories should be owned by root. Change the ownership for ${CLFS} and its subdirectories by running this command:

chown -Rv 0:0 ${CLFS}

The following files are to be owned by the group utmp not by root.

chgrp -v 13 ${CLFS}/var/run/utmp ${CLFS}/var/log/lastlog

7.19. Making the Temporary System Bootable

Some of the idiosyncracies of booting on ppc are discussed in Appendix E. Essentially, there are two options here - either copy the bootloader to an OSX root partition and boot from Open Firmware, or use an install, Live, or rescue CD to set up a bootstrap partition.

7.19.1. Copying the bootloader to OSX and booting from OF.

You must now ensure that /tools/etc/yaboot.conf contains the correct details for the CLFS system. Consult Section 13.4, “Making the CLFS System Bootable.” for details, but note that at this point you do not need the install, magicboot, enablecdboot or macosx parameters because these are not available when you boot from Open Firmware.

By this stage, you should have the temporary system on an ext2 filesystem on your Mac. Now, from within OSX, copy /tools/lib/yaboot/yaboot) and /tools/etc/yaboot.conf) to the OSX / directory.

Each time you want to boot into the temporary system, hold down the option-command-o-f keys to get to Open Firmware, then use the following command, replacing X with the number of the partition containing the OSX root filesystem (typically, this will be '3').

boot hd:X,yaboot

7.19.2. Using a CD to set up the bootstrap partition.

This is particularly appropriate if you cannot write to an ext2 filesystem from OSX. Boot from the CD, and (as necessary) create partitions and filesystems, mount the CLFS partition at /tools and untar the temporary system there.

Now set up /tools/etc/yaboot.conf - see Section 13.4, “Making the CLFS System Bootable.” for details of what should be in it, but note that the install and magicboot specifications should point to/tools/lib/yaboot/ and not /usr/lib/yaboot.

To write the bootloader to the disk, with /tools/sbin first on your path and /proc mounted, run the following command:

Warning

The following command will update the bootstrap partition and the boot variable in Open Firmware. Do not run the command if this is not desired.

PATH_PREFIX=/tools ybin -v -C /tools/etc/yaboot.conf

Alternatively, if the bootstrap partition has not already been initialized, perhaps because you are using a Live CD, you will need to use a different command to install the bootloader for the first time:

PATH_PREFIX=/tools mkofboot

7.20. What to do next

Now you're at the point to get your ${CLFS} directory copied over to your target machine. The easiest method would be to tar it up and copy the file.

tar -jcvf ${CLFS}.tar.bz2 ${CLFS}

Chapter 8. If You Are Going to Chroot

8.1. Introduction

This chapter shows how to prepare a chroot jail to build the final system packages into.

8.2. Util-linux-2.19.1

The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.

8.2.1. Installation of Util-linux

Prepare Util-linux for compilation:

./configure --prefix=/tools \
    --build=${CLFS_HOST} --host=${CLFS_TARGET} \
    --disable-makeinstall-chown

Compile the package:

make

Install the package:

make install

Details on this package are located in Section 10.21.3, “Contents of Util-linux.”

8.3. Mounting Virtual Kernel File Systems

Note

The commands in the remainder of the book should be run as the root user. Check that ${CLFS} is set in the root user’s environment before proceeding.

Various file systems exported by the kernel are used to communicate to and from the kernel itself. These file systems are virtual in that no disk space is used for them. The content of the file systems resides in memory.

Begin by creating directories onto which the file systems will be mounted:

mkdir -pv ${CLFS}/{dev,proc,sys}

Now mount the file systems:

mount -vt proc proc ${CLFS}/proc
mount -vt sysfs sysfs ${CLFS}/sys

Remember that if for any reason you stop working on the CLFS system and start again later, it is important to check that these file systems are mounted again before entering the chroot environment.

Two device nodes, /dev/console and /dev/null, are required to be present on the filesystem. These are needed by the kernel even before starting Udev early in the boot process, so we create them here:

mknod -m 600 ${CLFS}/dev/console c 5 1
mknod -m 666 ${CLFS}/dev/null c 1 3

Once the system is complete and booting, the rest of our device nodes are created by the Udev package. Since this package is not available to us right now, we must take other steps to provide device nodes under on the CLFS filesystem. We will use the “bind” option in the mount command to make our host system's /dev structure appear in the new CLFS filesystem:

mount -v -o bind /dev ${CLFS}/dev

Additional file systems will soon be mounted from within the chroot environment. To keep the host up to date, perform a “fake mount” for each of these now:

mount -f -vt tmpfs tmpfs ${CLFS}/dev/shm
mount -f -vt devpts -o gid=4,mode=620 devpts ${CLFS}/dev/pts

8.4. Before Entering the Chroot Environment

8.4.1. Determining if steps need to be taken

Before we can enter the chroot we have to make sure that the system is in the proper state. From this point on the ${CLFS_TARGET} environment variable will no longer exist, so it will have no bearing on the rest of the book - most packages will rely on config.guess provided by Section 10.34, “Automake-1.11.1”. Packages that do not use autotools either do not care about the target triplet, or have their own means of determining its value.

In both cases, the information about the host cpu used to determine the target triplet is gathered from the same place, uname -m. Executing this command outside of the chroot as well as inside the chroot will have the exact same output.

If you're unsure if your host and target have the same target triplet, you can use this test to determine what the host's target triplet is and if you need to take any steps to ensure that you don't build for the wrong architecture. Extract the Section 10.34, “Automake-1.11.1” tarball and cd into the created directory. Then execute the following to see what the detected target triplet is by config.guess:

lib/config.guess

If the output of that command does not equal what is in ${CLFS_TARGET} then you need to read on. If it does then you can safely continue onto Section 8.5, “Entering the Chroot Environment”.

8.4.2. Using Setarch

If your host has a tool called setarch this may solve your problems. The reason for saying may is because on a architecture such as x86_64, using setarch linux32 uname -m will only ever output i686. It is not possible to get an output of i486 or i586.

To test if setarch does everything you need it to, execute the following command from inside the Section 10.34, “Automake-1.11.1” directory:

setarch linux32 lib/config.guess

If the output of the command above equals what is in ${CLFS_TARGET} then you have a viable solution. You can wrap the chroot command on the next page with setarch linux32. It will look like the following:

setarch linux32 chroot "${CLFS}" /tools/bin/env -i \
    HOME=/root TERM="${TERM}" PS1='\u:\w\$ ' \
    PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
    /tools/bin/bash --login +h

If setarch works for you then you can safely continue onto Section 8.5, “Entering the Chroot Environment”. If not, there is one more option covered in this book.

8.4.3. Using a Uname Hack

The Uname Hack is a kernel module that modifies the output of uname -m by directly changing the value of the detected machine type. The kernel module will save the original value and restore it when the module is unloaded.

Uname Hack (20080713) - 1 KB:

Download: http://cross-lfs.org/files/extras/uname_hack-20080713.tar.bz2

MD5 sum: dd7694f28ccc6e6bfb326b1790adb5e9

Extract the tarball and cd into the created directory. To build the Uname Hack you must have the kernel sources for your currently running kernel available. Build the Uname Hack with the following or similar command:

make uname_hack_fake_machine=ppc

The meaning of the make and install options:

uname_hack_fake_machine=ppc

This parameter sets the value that the uts machine type will be changed to.

In the top level directory of the Uname Hack package you should see a file named uname_hack.ko. As soon as that module is loaded into the running kernel the output of uname -m will be affected immediately system-wide. Load the kernel module with the following command:

insmod uname_hack.ko

To test if the Uname Hack is working properly, execute the following command from inside the Section 10.34, “Automake-1.11.1” directory:

lib/config.guess

The output of the above command should be the same as the ${CLFS_TARGET} environment variable. If this is not the case, you can try and get help on the CLFS Support Mailing List or the IRC Channel. See Section 1.6, “Help” for more information.

8.5. Entering the Chroot Environment

It is time to enter the chroot environment to begin building and installing the final CLFS system. As user root, run the following command to enter the realm that is, at the moment, populated with only the temporary tools:

chroot "${CLFS}" /tools/bin/env -i \
    HOME=/root TERM="${TERM}" PS1='\u:\w\$ ' \
    PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \
    /tools/bin/bash --login +h

The -i option given to the env command will clear all variables of the chroot environment. After that, only the HOME, TERM, PS1, and PATH variables are set again. The TERM=${TERM} construct will set the TERM variable inside chroot to the same value as outside chroot. This variable is needed for programs like vim and less to operate properly. If other variables are needed, such as CFLAGS or CXXFLAGS, this is a good place to set them again.

From this point on, there is no need to use the CLFS variable anymore, because all work will be restricted to the CLFS file system. This is because the Bash shell is told that ${CLFS} is now the root (/) directory.

Notice that /tools/bin comes last in the PATH. This means that a temporary tool will no longer be used once its final version is installed. This occurs when the shell does not “remember” the locations of executed binaries—for this reason, hashing is switched off by passing the +h option to bash.

It is important that all the commands throughout the remainder of this chapter and the following chapters are run from within the chroot environment. If you leave this environment for any reason (rebooting for example), remember to first mount the proc and devpts file systems (discussed in the previous section) and enter chroot again before continuing with the installations.

Note that the bash prompt will say I have no name! This is normal because the /etc/passwd file has not been created yet.

8.6. Changing Ownership

Note

This step is not optional as some of the binaries in /tools are set u+s. leaving the permissions as is could cause some commands, mount in particular, to fail later.

Currently, the /tools and /cross-tools directories are owned by the user clfs, a user that exists only on the host system. Although the /tools and /cross-tools directories can be deleted once the CLFS system has been finished, they can be retained to build additional CLFS systems. If the /tools and /cross-tools directories are kept as is, the files are owned by a user ID without a corresponding account. This is dangerous because a user account created later could get this same user ID and would own the /tools directory and all the files therein, thus exposing these files to possible malicious manipulation.

To avoid this issue, add the clfs user to the new CLFS system later when creating the /etc/passwd file, taking care to assign it the same user and group IDs as on the host system. Alternatively, assign the contents of the /tools and /cross-tools directories to user root by running the following commands:

chown -Rv 0:0 /tools
chown -Rv 0:0 /cross-tools

The commands use 0:0 instead of root:root, because chown is unable to resolve the name “root” until the passwd file has been created.

8.7. Creating Directories

It is time to create some structure in the CLFS file system. Create a standard directory tree by issuing the following commands:

mkdir -pv /{bin,boot,dev,{etc/,}opt,home,lib,mnt}
mkdir -pv /{proc,media/{floppy,cdrom},sbin,srv,sys}
mkdir -pv /var/{lock,log,mail,run,spool}
mkdir -pv /var/{opt,cache,lib/{misc,locate},local}
install -dv -m 0750 /root
install -dv -m 1777 {/var,}/tmp
mkdir -pv /usr/{,local/}{bin,include,lib,sbin,src}
mkdir -pv /usr/{,local/}share/{doc,info,locale,man}
mkdir -pv /usr/{,local/}share/{misc,terminfo,zoneinfo}
mkdir -pv /usr/{,local/}share/man/man{1..8}
for dir in /usr{,/local}; do
  ln -sv share/{man,doc,info} $dir
done

Directories are, by default, created with permission mode 755, but this is not desirable for all directories. In the commands above, two changes are made—one to the home directory of user root, and another to the directories for temporary files.

The first mode change ensures that not just anybody can enter the /root directory—the same as a normal user would do with his or her home directory. The second mode change makes sure that any user can write to the /tmp and /var/tmp directories, but cannot remove another user's files from them. The latter is prohibited by the so-called “sticky bit,” the highest bit (1) in the 1777 bit mask.

8.7.1. FHS Compliance Note

The directory tree is based on the Filesystem Hierarchy Standard (FHS) (available at http://www.pathname.com/fhs/). In addition to the tree created above, this standard stipulates the existence of /usr/local/games and /usr/share/games. The FHS is not precise as to the structure of the /usr/local/share subdirectory, so we create only the directories that are needed. However, feel free to create these directories if you prefer to conform more strictly to the FHS.

8.8. Creating Essential Symlinks

Some programs use hard-wired paths to programs which do not exist yet. In order to satisfy these programs, create a number of symbolic links which will be replaced by real files throughout the course of the next chapter after the software has been installed.

ln -sv /tools/bin/{bash,cat,echo,grep,pwd,stty} /bin
ln -sv /tools/bin/file /usr/bin
ln -sv /tools/lib/libgcc_s.so{,.1} /usr/lib
ln -sv /tools/lib/libstd* /usr/lib
ln -sv bash /bin/sh

8.9. Creating the passwd, group, and log Files

In order for user root to be able to login and for the name “root” to be recognized, there must be relevant entries in the /etc/passwd and /etc/group files.

Create the /etc/passwd file by running the following command:

cat > /etc/passwd << "EOF"
root:x:0:0:root:/root:/bin/bash
EOF

The actual password for root (the “x” used here is just a placeholder) will be set later.

Additional users you may want to add:

bin:x:1:1:bin:/bin:/bin/false

Can be useful for compatibility with legacy applications.

daemon:x:2:6:daemon:/sbin:/bin/false

It is often recommended to use an unprivileged User ID/Group ID for daemons to run as, in order to limit their access to the system.

adm:x:3:16:adm:/var/adm:/bin/false

Was used for programs that performed administrative tasks.

lp:x:10:9:lp:/var/spool/lp:/bin/false

Used by programs for printing

mail:x:30:30:mail:/var/mail:/bin/false

Often used by email programs

news:x:31:31:news:/var/spool/news:/bin/false

Often used for network news servers

operator:x:50:0:operator:/root:/bin/bash

Often used to allow system operators to access the system

postmaster:x:51:30:postmaster:/var/spool/mail:/bin/false

Generally used as an account that receives all the information of troubles with the mail server

nobody:x:65534:65534:nobody:/:/bin/false

Used by NFS

Create the /etc/group file by running the following command:

cat > /etc/group << "EOF"
root:x:0:
bin:x:1:
sys:x:2:
kmem:x:3:
tty:x:4:
tape:x:5:
daemon:x:6:
floppy:x:7:
disk:x:8:
lp:x:9:
dialout:x:10:
audio:x:11:
video:x:12:
utmp:x:13:
usb:x:14:
cdrom:x:15:
EOF

Additional groups you may want to add

adm:x:16:root,adm,daemon

All users in this group are allowed to do administrative tasks

console:x:17:

This group has direct access to the console

cdrw:x:18:

This group is allowed to use the CDRW drive

mail:x:30:mail

Used by MTAs (Mail Transport Agents)

news:x:31:news

Used by Network News Servers

users:x:1000:

The default GID used by shadow for new users

nogroup:x:65533:

This is a default group used by some programs that do not require a group

nobody:x:65534:

This is used by NFS

The created groups are not part of any standard—they are groups decided on in part by the requirements of the Udev configuration in the final system, and in part by common convention employed by a number of existing Linux distributions. The Linux Standard Base (LSB, available at http://www.linuxbase.org) recommends only that, besides the group “root” with a Group ID (GID) of 0, a group “bin” with a GID of 1 be present. All other group names and GIDs can be chosen freely by the system administrator since well-written programs do not depend on GID numbers, but rather use the group's name.

To remove the “I have no name!” prompt, start a new shell. Since a full Glibc was installed in Constructing Cross-Compile Tools and the /etc/passwd and /etc/group files have been created, user name and group name resolution will now work.

exec /tools/bin/bash --login +h

Note the use of the +h directive. This tells bash not to use its internal path hashing. Without this directive, bash would remember the paths to binaries it has executed. To ensure the use of the newly compiled binaries as soon as they are installed, the +h directive will be used for the duration of the next chapters.

The login, agetty, and init programs (and others) use a number of log files to record information such as who was logged into the system and when. However, these programs will not write to the log files if they do not already exist. Initialize the log files and give them proper permissions:

touch /var/run/utmp /var/log/{btmp,lastlog,wtmp}
chgrp -v utmp /var/run/utmp /var/log/lastlog
chmod -v 664 /var/run/utmp /var/log/lastlog
chmod -v 600 /var/log/btmp

The /var/run/utmp file records the users that are currently logged in. The /var/log/wtmp file records all logins and logouts. The /var/log/lastlog file records when each user last logged in. The /var/log/btmp file records the bad login attempts.

8.10. Mounting Kernel Filesystems

8.10.1. Mounting Additional Kernel Filesystems

Mount the proper virtual (kernel) file systems on the newly-created directories:

mount -vt devpts -o gid=4,mode=620 none /dev/pts
mount -vt tmpfs none /dev/shm

The mount commands executed above may result in the following warning message:

can't open /etc/fstab: No such file or directory.

This file—/etc/fstab—has not been created yet but is also not required for the file systems to be properly mounted. As such, the warning can be safely ignored.

Part V. Building the CLFS System

Chapter 9. Constructing Testsuite Tools

9.1. Introduction

This chapter builds the tools needed by some packages to run the tests that they have. I.e., make check. Tcl, Expect, and DejaGNU are needed for the GCC and Binutils testsuites. Installing three packages for testing purposes may seem excessive, but it is very reassuring, if not essential, to know that the most important tools are working properly.

9.2. Tcl-8.5.9

The Tcl package contains the Tool Command Language.

9.2.1. Installation of Tcl

Prepare Tcl for compilation:

cd unix
./configure --prefix=/tools

Build the package:

make

Install the package:

make install

Tcl's private header files are needed for the next package, Expect. Install them into /tools:

make install-private-headers

Now make a necessary symbolic link:

ln -sv tclsh8.5 /tools/bin/tclsh

9.2.2. Contents of Tcl

Installed programs: tclsh (link to tclsh8.5) and tclsh8.5
Installed libraries: libtcl8.5.so, libtclstub8.5.a

Short Descriptions

tclsh8.5

The Tcl command shell

tclsh

A link to tclsh8.5

libtcl8.5.so

The Tcl library

libtclstub8.5.a

The Tcl Stub library

9.3. Expect-5.45

The Expect package contains a program for carrying out scripted dialogues with other interactive programs.

9.3.1. Installation of Expect

Now prepare Expect for compilation:

./configure --prefix=/tools --with-tcl=/tools/lib \
    --with-tclinclude=/tools/include

The meaning of the configure options:

--with-tcl=/tools/lib

This ensures that the configure script finds the Tcl installation in the temporary testsuite-tools location.

--with-tclinclude=/tools/include

This explicitly tells Expect where to find Tcl's internal headers. Using this option avoids conditions where configure fails because it cannot automatically discover the location of the Tcl source directory.

Build the package:

make

Install the package:

make SCRIPTS="" install

The meaning of the make parameter:

SCRIPTS=""

This prevents installation of the supplementary expect scripts, which are not needed.

9.3.2. Contents of Expect

Installed program: expect
Installed library: libexpect-5.43.a

Short Descriptions

expect

Communicates with other interactive programs according to a script

libexpect-5.43.a

Contains functions that allow Expect to be used as a Tcl extension or to be used directly from C or C++ (without Tcl)

9.4. DejaGNU-1.5

The DejaGNU package contains a framework for testing other programs.

9.4.1. Installation of DejaGNU

Prepare DejaGNU for compilation:

./configure --prefix=/tools

Build and install the package:

make install

9.4.2. Contents of DejaGNU

Installed program: runtest

Short Descriptions

runtest

A wrapper script that locates the proper expect shell and then runs DejaGNU

Chapter 10. Installing Basic System Software

10.1. Introduction

In this chapter, we enter the building site and start constructing the CLFS system in earnest. The installation of this software is straightforward. Although in many cases the installation instructions could be made shorter and more generic, we have opted to provide the full instructions for every package to minimize the possibilities for mistakes. The key to learning what makes a Linux system work is to know what each package is used for and why the user (or the system) needs it. For every installed package, a summary of its contents is given, followed by concise descriptions of each program and library the package installed.

If using compiler optimizations, please review the optimization hint at http://hints.cross-lfs.org/index.php/Optimization. Compiler optimizations can make a program run slightly faster, but they may also cause compilation difficulties and problems when running the program. If a package refuses to compile when using optimization, try to compile it without optimization and see if that fixes the problem. Even if the package does compile when using optimization, there is the risk it may have been compiled incorrectly because of the complex interactions between the code and build tools. Also note that the -march and -mtune options may cause problems with the toolchain packages (Binutils, GCC and Glibc). The small potential gains achieved in using compiler optimizations are often outweighed by the risks. First-time builders of CLFS are encouraged to build without custom optimizations. The subsequent system will still run very fast and be stable at the same time.

The order that packages are installed in this chapter needs to be strictly followed to ensure that no program accidentally acquires a path referring to /tools hard-wired into it. For the same reason, do not compile packages in parallel. Compiling in parallel may save time (especially on dual-CPU machines), but it could result in a program containing a hard-wired path to /tools, which will cause the program to stop working when that directory is removed.

To keep track of which package installs particular files, a package manager can be used. For a general overview of different styles of package managers, please take a look at the next page.

10.2. Package Management

Package Management is an often-requested addition to the CLFS Book. A Package Manager allows tracking the installation of files making it easy to remove and upgrade packages. Before you begin to wonder, NO—this section will not talk about nor recommend any particular package manager. What it provides is a roundup of the more popular techniques and how they work. The perfect package manager for you may be among these techniques or may be a combination of two or more of these techniques. This section briefly mentions issues that may arise when upgrading packages.

Some reasons why no specific package manager is recommended in CLFS or CBLFS include:

  • Dealing with package management takes the focus away from the goals of these books—teaching how a Linux system is built.

  • There are multiple solutions for package management, each having its strengths and drawbacks. Including one that satisfies all audiences is difficult.

There are some hints written on the topic of package management. Visit the Hints subproject and see if one of them fits your need.

10.2.1. Upgrade Issues

A Package Manager makes it easy to upgrade to newer versions when they are released. Generally the instructions in CLFS and CBLFS can be used to upgrade to the newer versions. Here are some points that you should be aware of when upgrading packages, especially on a running system.

  • If one of the toolchain packages (Glibc, GCC or Binutils) needs to be upgraded to a newer minor version, it is safer to rebuild CLFS. Though you may be able to get by rebuilding all the packages in their dependency order, we do not recommend it. For example, if glibc-2.2.x needs to be updated to glibc-2.3.x, it is safer to rebuild. For micro version updates, a simple reinstallation usually works, but is not guaranteed. For example, upgrading from glibc-2.3.4 to glibc-2.3.5 will not usually cause any problems.

  • If a package containing a shared library is updated, and if the name of the library changes, then all the packages dynamically linked to the library need to be recompiled to link against the newer library. (Note that there is no correlation between the package version and the name of the library.) For example, consider a package foo-1.2.3 that installs a shared library with name libfoo.so.1. Say you upgrade the package to a newer version foo-1.2.4 that installs a shared library with name libfoo.so.2. In this case, all packages that are dynamically linked to libfoo.so.1 need to be recompiled to link against libfoo.so.2. Note that you should not remove the previous libraries until the dependent packages are recompiled.

  • If you are upgrading a running system, be on the lookout for packages that use cp instead of install to install files. The latter command is usually safer if the executable or library is already loaded in memory.

10.2.2. Package Management Techniques

The following are some common package management techniques. Before making a decision on a package manager, do some research on the various techniques, particularly the drawbacks of the particular scheme.

10.2.2.1. It is All in My Head!

Yes, this is a package management technique. Some folks do not find the need for a package manager because they know the packages intimately and know what files are installed by each package. Some users also do not need any package management because they plan on rebuilding the entire system when a package is changed.

10.2.2.2. Install in Separate Directories

This is a simplistic package management that does not need any extra package to manage the installations. Each package is installed in a separate directory. For example, package foo-1.1 is installed in /usr/pkg/foo-1.1 and a symlink is made from /usr/pkg/foo to /usr/pkg/foo-1.1. When installing a new version foo-1.2, it is installed in /usr/pkg/foo-1.2 and the previous symlink is replaced by a symlink to the new version.

Environment variables such as PATH, LD_LIBRARY_PATH, MANPATH, INFOPATH and CPPFLAGS need to be expanded to include /usr/pkg/foo. For more than a few packages, this scheme becomes unmanageable.

10.2.2.3. Symlink Style Package Management

This is a variation of the previous package management technique. Each package is installed similar to the previous scheme. But instead of making the symlink, each file is symlinked into the /usr hierarchy. This removes the need to expand the environment variables. Though the symlinks can be created by the user to automate the creation, many package managers have been written using this approach. A few of the popular ones include Stow, Epkg, Graft, and Depot.

The installation needs to be faked, so that the package thinks that it is installed in /usr though in reality it is installed in the /usr/pkg hierarchy. Installing in this manner is not usually a trivial task. For example, consider that you are installing a package libfoo-1.1. The following instructions may not install the package properly:

./configure --prefix=/usr/pkg/libfoo/1.1
make
make install

The installation will work, but the dependent packages may not link to libfoo as you would expect. If you compile a package that links against libfoo, you may notice that it is linked to /usr/pkg/libfoo/1.1/lib/libfoo.so.1 instead of /usr/lib/libfoo.so.1 as you would expect. The correct approach is to use the DESTDIR strategy to fake installation of the package. This approach works as follows:

./configure --prefix=/usr
make
make DESTDIR=/usr/pkg/libfoo/1.1 install

Most packages support this approach, but there are some which do not. For the non-compliant packages, you may either need to manually install the package, or you may find that it is easier to install some problematic packages into /opt.

10.2.2.4. Timestamp Based

In this technique, a file is timestamped before the installation of the package. After the installation, a simple use of the find command with the appropriate options can generate a log of all the files installed after the timestamp file was created. A package manager written with this approach is install-log.

Though this scheme has the advantage of being simple, it has two drawbacks. If, during installation, the files are installed with any timestamp other than the current time, those files will not be tracked by the package manager. Also, this scheme can only be used when one package is installed at a time. The logs are not reliable if two packages are being installed on two different consoles.

10.2.2.5. LD_PRELOAD Based

In this approach, a library is preloaded before installation. During installation, this library tracks the packages that are being installed by attaching itself to various executables such as cp, install, mv and tracking the system calls that modify the filesystem. For this approach to work, all the executables need to be dynamically linked without the suid or sgid bit. Preloading the library may cause some unwanted side-effects during installation. Therefore, it is advised that one performs some tests to ensure that the package manager does not break anything and logs all the appropriate files.

10.2.2.6. Creating Package Archives

In this scheme, the package installation is faked into a separate tree as described in the Symlink style package management. After the installation, a package archive is created using the installed files. This archive is then used to install the package either on the local machine or can even be used to install the package on other machines.

This approach is used by most of the package managers found in the commercial distributions. Examples of package managers that follow this approach are RPM (which, incidentally, is required by the Linux Standard Base Specification), pkg-utils, Debian's apt, and Gentoo's Portage system. A hint describing how to adopt this style of package management for CLFS systems is located at http://hints.cross-lfs.org/index.php/Fakeroot.

10.3. About Test Suites, Again

In the final-system build, you are no longer cross-compiling so it is possible to run package testsuites. Some test suites are more important than others. For example, the test suites for the core toolchain packages—GCC, Binutils, and Glibc—are of the utmost importance due to their central role in a properly functioning system. The test suites for GCC and Glibc can take a very long time to complete, especially on slower hardware, but are strongly recommended.

A common issue with running the test suites for Binutils and GCC is running out of pseudo terminals (PTYs). This can result in a high number of failing tests. This may happen for several reasons, but the most likely cause (if you chrooted) is that the host system does not have the devpts file system set up correctly. This issue is discussed in greater detail at http://trac.cross-lfs.org/wiki/faq#no-ptys.

Sometimes package test suites will fail, but for reasons which the developers are aware of and have deemed non-critical. Consult the logs located at http://cross-lfs.org/testsuite-logs/CLFS-1.2/ to verify whether or not these failures are expected. This site is valid for all tests throughout this book.

10.4. Temporary Perl-5.14.0

The Perl package contains the Practical Extraction and Report Language.

10.4.1. Installation of Perl

First adapt some hard-wired paths to the C library by applying the following patch:

patch -Np1 -i ../perl-5.14.0-libc-1.patch

Change a hardcoded path from /usr/include to /tools/include:

sed -i 's@/usr/include@/tools/include@g' ext/Errno/Errno_pm.PL

Prepare Temporary Perl for compilation:

./configure.gnu --prefix=/tools -Dcc="gcc"

The meaning of the configure option:

-Dcc="gcc"

Tells Perl to use gcc instead of the default cc.

Compile the package:

make

Although Perl comes with a test suite, it is not recommended to run it at this point, as this Perl installation is only temporary. The test suite can be run later in this chapter if desired.

Install the package:

make install

Finally, create a necessary symlink:

ln -sfv /tools/bin/perl /usr/bin

Details on this package are located in Section 10.31.2, “Contents of Perl.”

10.5. Linux-Headers-2.6.39

The Linux Kernel contains a make target that installs “sanitized” kernel headers.

10.5.1. Installation of Linux-Headers

For this step you will need the kernel tarball.

Install the kernel header files:

make mrproper
make headers_check
make INSTALL_HDR_PATH=dest headers_install
cp -rv dest/include/* /usr/include
find /usr/include -name .install -or -name ..install.cmd | xargs rm -fv

The meaning of the make commands:

make mrproper

Ensures that the kernel source dir is clean.

make headers_check

Sanitizes the raw kernel headers so that they can be used by userspace programs.

make INSTALL_HDR_PATH=dest headers_install

Normally the headers_install target removes the entire destination directory (default /usr/include) before installing the headers. To prevent this, we tell the kernel to install the headers to a directory inside the source dir.

10.5.2. Contents of Linux-Headers

Installed headers: /usr/include/{asm,asm-generic,drm,linux,mtd,rdma,sound,video}/*.h
Installed directories: /usr/include/asm, /usr/include/asm-generic, /usr/include/drm, /usr/include/linux, /usr/include/mtd, /usr/include/rdma, /usr/include/scsi, /usr/include/sound, /usr/include/video, /usr/include/xen

Short Descriptions

/usr/include/{asm,asm-generic,drm,linux,mtd,rdma,sound,video}/*.h

The Linux API headers

10.6. Man-pages-3.32

The Man-pages package contains over 1,200 man pages.

10.6.1. Installation of Man-pages

Install Man-pages by running:

make install

10.6.2. Contents of Man-pages

Installed files: various man pages

Short Descriptions

man pages

This package contains man pages that describe the following: POSIX headers (section 0p), POSIX utilities (section 1p), POSIX functions (section 3p), user commands (section 1), system calls (section 2), libc calls (section 3), device information (section 4), file formats (section 5), games (section 6), conventions and macro packages (section 7), system administration (section 8), and kernel (section 9).

10.7. EGLIBC-2.13

The EGLIBC package contains the main C library. This library provides the basic routines for allocating memory, searching directories, opening and closing files, reading and writing files, string handling, pattern matching, arithmetic, and so on.

10.7.1. Installation of EGLIBC

Note

Some packages outside of CLFS suggest installing GNU libiconv in order to translate data from one encoding to another. The project's home page (http://www.gnu.org/software/libiconv/) says “This library provides an iconv() implementation, for use on systems which don't have one, or whose implementation cannot convert from/to Unicode.” EGLIBC provides an iconv() implementation and can convert from/to Unicode, therefore libiconv is not required on a CLFS system.

At the end of the installation, the build system will run a sanity test to make sure everything installed properly. This script will attempt to test for a library that is only used in the test suite and is never installed. Prevent the script from testing for this library with the following command:

sed -i 's/\(&& $name ne\) "db1"/ & \1 "nss_test1"/' scripts/test-installation.pl

This same script performs its tests by attempting to compile test programs against certain libraries. However it does not specify the ld.so, and our toolchain is still configured to use the one in /tools. The following set of commands will force the script to use the complete path of the new ld.so that was just installed:

LINKER=$(readelf -l /tools/bin/bash | sed -n 's@.*interpret.*/tools\(.*\)]$@\1@p')
sed -i "s|libs -o|libs -L/usr/lib -Wl,-dynamic-linker=${LINKER} -o|" \
  scripts/test-installation.pl
unset LINKER

The EGLIBC build system is self-contained and will install perfectly, even though the compiler specs file and linker are still pointing at /tools. The specs and linker cannot be adjusted before the EGLIBC install because the EGLIBC Autoconf tests would give false results and defeat the goal of achieving a clean build.

The EGLIBC documentation recommends building EGLIBC outside of the source directory in a dedicated build directory:

mkdir -v ../eglibc-build
cd ../eglibc-build

Prepare EGLIBC for compilation:

../eglibc-2.13/configure --prefix=/usr \
    --disable-profile --enable-add-ons --enable-kernel=2.6.0 \
    --libexecdir=/usr/lib/eglibc

The meaning of the new configure option:

--libexecdir=/usr/lib/eglibc

This changes the location of the pt_chown program from its default of /usr/libexec to /usr/lib/eglibc.

Compile the package:

make

Important

The test suite for EGLIBC is considered critical. Do not skip it under any circumstance.

Before running the tests, copy a file from the source tree into our build tree to prevent a couple of test failures, then run the tests:

cp -v ../eglibc-2.13/iconvdata/gconv-modules iconvdata
make -k check 2>&1 | tee eglibc-check-log; grep Error eglibc-check-log

The EGLIBC test suite is highly dependent on certain functions of the host system, in particular the kernel. The posix/annexc test normally fails and you should see Error 1 (ignored) in the output. Apart from this, the EGLIBC test suite is always expected to pass. However, in certain circumstances, some failures are unavoidable. If a test fails because of a missing program (or missing symbolic link), or a segfault, you will see an error code greater than 127 and the details will be in the log. More commonly, tests will fail with Error 2 - for these, the contents of the corresponding .out file, e.g. posix/annexc.out may be informative. Here is a list of the most common issues:

  • The math tests sometimes fail. Certain optimization settings are known to be a factor here.

  • If you have mounted the CLFS partition with the noatime option, the atime test will fail. As mentioned in Section 2.4, “Mounting the New Partition”, do not use the noatime option while building CLFS.

  • When running on older and slower hardware, some tests can fail because of test timeouts being exceeded.

Though it is a harmless message, the install stage of EGLIBC will complain about the absence of /etc/ld.so.conf. Prevent this warning with:

touch /etc/ld.so.conf

Install the package:

make install

10.7.2. Internationalization

The locales that can make the system respond in a different language were not installed by the above command. Install them with:

make localedata/install-locales

To save time, an alternative to running the previous command (which generates and installs every locale listed in the eglibc-2.13/localedata/SUPPORTED file) is to install only those locales that are wanted and needed. This can be achieved by using the localedef command. Information on this command is located in the INSTALL file in the EGLIBC source. However, there are a number of locales that are essential in order for the tests of future packages to pass, in particular, the libstdc++ tests from GCC. The following instructions, instead of the install-locales target used above, will install the minimum set of locales necessary for the tests to run successfully:

mkdir -pv /usr/lib/locale
localedef -i cs_CZ -f UTF-8 cs_CZ.UTF-8
localedef -i de_DE -f ISO-8859-1 de_DE
localedef -i de_DE@euro -f ISO-8859-15 de_DE@euro
localedef -i en_HK -f ISO-8859-1 en_HK
localedef -i en_PH -f ISO-8859-1 en_PH
localedef -i en_US -f ISO-8859-1 en_US
localedef -i es_MX -f ISO-8859-1 es_MX
localedef -i fa_IR -f UTF-8 fa_IR
localedef -i fr_FR -f ISO-8859-1 fr_FR
localedef -i fr_FR@euro -f ISO-8859-15 fr_FR@euro
localedef -i it_IT -f ISO-8859-1 it_IT
localedef -i ja_JP -f EUC-JP ja_JP

Some locales installed by the make localedata/install-locales command above are not properly supported by some applications that are in CLFS and CBLFS. Because of the various problems that arise due to application programmers making assumptions that break in such locales, CLFS should not be used in locales that utilize multibyte character sets (including UTF-8) or right-to-left writing order. Numerous unofficial and unstable patches are required to fix these problems, and it has been decided by the CLFS developers not to support such complex locales at this time. This applies to the ja_JP and fa_IR locales as well—they have been installed only for GCC and Gettext tests to pass, and the watch program (part of the Procps package) does not work properly in them. Various attempts to circumvent these restrictions are documented in internationalization-related hints.

10.7.3. Configuring EGLIBC

The /etc/nsswitch.conf file needs to be created because, although EGLIBC provides defaults when this file is missing or corrupt, the EGLIBC defaults do not work well in a networked environment. The time zone also needs to be configured.

Create a new file /etc/nsswitch.conf by running the following:

cat > /etc/nsswitch.conf << "EOF"
# Begin /etc/nsswitch.conf

passwd: files
group: files
shadow: files

hosts: files dns
networks: files

protocols: files
services: files
ethers: files
rpc: files

# End /etc/nsswitch.conf
EOF

To determine the local time zone, run the following script:

tzselect

After answering a few questions about the location, the script will output the name of the time zone (e.g., EST5EDT or Canada/Eastern). Then create the /etc/localtime file by running:

cp -v --remove-destination /usr/share/zoneinfo/[xxx] \
    /etc/localtime

Replace [xxx] with the name of the time zone that tzselect provided (e.g., Canada/Eastern).

The meaning of the cp option:

--remove-destination

This is needed to force removal of the already existing symbolic link. The reason for copying the file instead of using a symlink is to cover the situation where /usr is on a separate partition. This could be important when booted into single user mode.

10.7.4. Configuring The Dynamic Loader

By default, the dynamic loader (/lib/ld.so.1) searches through /lib and /usr/lib for dynamic libraries that are needed by programs as they are run. However, if there are libraries in directories other than /lib and /usr/lib, these need to be added to the /etc/ld.so.conf file in order for the dynamic loader to find them. Two directories that are commonly known to contain additional libraries are /usr/local/lib and /opt/lib, so add those directories to the dynamic loader's search path.

Create a new file /etc/ld.so.conf by running the following:

cat > /etc/ld.so.conf << "EOF"
# Begin /etc/ld.so.conf

/usr/local/lib
/opt/lib

# End /etc/ld.so.conf
EOF

10.7.5. Contents of EGLIBC

Installed programs: catchsegv, gencat, getconf, getent, iconv, iconvconfig, ldconfig, ldd, lddlibc4, locale, localedef, mtrace, nscd, pcprofiledump, pt_chown, rpcgen, rpcinfo, sln, sprof, tzselect, xtrace, zdump, and zic
Installed libraries: ld.so, libBrokenLocale.[a,so], libSegFault.so, libanl.[a,so], libbsd-compat.a, libc.[a,so], libc_nonshared.a, libcidn.[a,so], libcrypt.[a,so], libdl.[a,so], libg.a, libieee.a, libm.[a,so], libmcheck.a, libmemusage.so, libnsl.a, libnss_compat.so, libnss_dns.so, libnss_files.so, libnss_hesiod.so, libnss_nis.so, libnss_nisplus.so, libpcprofile.so, libpthread.[a,so], libpthread_nonshared.a, libresolv.[a,so], librpcsvc.a, librt.[a,so], libthread_db.so, and libutil.[a,so]
Installed directories: /usr/include/arpa, /usr/include/bits, /usr/include/gnu, /usr/include/net, /usr/include/netash, /usr/include/netatalk, /usr/include/netax25, /usr/include/neteconet, /usr/include/netinet, /usr/include/netipx, /usr/include/netiucv, /usr/include/netpacket, /usr/include/netrom, /usr/include/netrose, /usr/include/nfs, /usr/include/protocols, /usr/include/rpc, /usr/include/rpcsvc, /usr/include/sys, /usr/lib/gconv, /usr/lib/eglibc, /usr/lib/locale, /usr/share/i18n, /usr/share/zoneinfo, /var/cache/ldconfig

Short Descriptions

catchsegv

Can be used to create a stack trace when a program terminates with a segmentation fault

gencat

Generates message catalogues

getconf

Displays the system configuration values for file system specific variables

getent

Gets entries from an administrative database

iconv

Performs character set conversion

iconvconfig

Creates fastloading iconv module configuration files

ldconfig

Configures the dynamic linker runtime bindings

ldd

Reports which shared libraries are required by each given program or shared library

lddlibc4

Assists ldd with object files

locale

Tells the compiler to enable or disable the use of POSIX locales for built-in operations

localedef

Compiles locale specifications

mtrace

Reads and interprets a memory trace file and displays a summary in human-readable format

nscd

A daemon that provides a cache for the most common name service requests

pcprofiledump

Dumps information generated by PC profiling

pt_chown

A helper program for grantpt to set the owner, group and access permissions of a slave pseudo terminal

rpcgen

Generates C code to implement the Remote Procecure Call (RPC) protocol

rpcinfo

Makes an RPC call to an RPC server

sln

A statically linked program that creates symbolic links

sprof

Reads and displays shared object profiling data

tzselect

Asks the user about the location of the system and reports the corresponding time zone description

xtrace

Traces the execution of a program by printing the currently executed function

zdump

The time zone dumper

zic

The time zone compiler

ld.so

The helper program for shared library executables

libBrokenLocale

Used by programs, such as Mozilla, to solve broken locales

libSegFault

The segmentation fault signal handler

libanl

An asynchronous name lookup library

libbsd-compat

Provides the portability needed in order to run certain Berkey Software Distribution (BSD) programs under Linux

libc

The main C library

libcidn

Used internally by EGLIBC for handling internationalized domain names in the getaddrinfo() function

libcrypt

The cryptography library

libdl

The dynamic linking interface library

libg

A runtime library for g++

libieee

The Institute of Electrical and Electronic Engineers (IEEE) floating point library

libm

The mathematical library

libmcheck

Contains code run at boot

libmemusage

Used by memusage (included in EGLIBC, but not built in a base CLFS system as it has additional dependencies) to help collect information about the memory usage of a program

libnsl

The network services library

libnss

The Name Service Switch libraries, containing functions for resolving host names, user names, group names, aliases, services, protocols, etc.

libpcprofile

Contains profiling functions used to track the amount of CPU time spent in specific source code lines

libpthread

The POSIX threads library

libresolv

Contains functions for creating, sending, and interpreting packets to the Internet domain name servers

librpcsvc

Contains functions providing miscellaneous RPC services

librt

Contains functions providing most of the interfaces specified by the POSIX.1b Realtime Extension

libthread_db

Contains functions useful for building debuggers for multi-threaded programs

libutil

Contains code for “standard” functions used in many different Unix utilities

10.8. Adjusting the Toolchain

Now we amend the GCC specs file so that it points to the new dynamic linker. A perl command accomplishes this:

gcc -dumpspecs | \
perl -p -e 's@/tools/lib/ld@/lib/ld@g;' \
     -e 's@\*startfile_prefix_spec:\n@$_/usr/lib/ @g;' > \
     $(dirname $(gcc --print-libgcc-file-name))/specs

It is a good idea to visually inspect the specs file to verify the intended change was actually made.

Note that /lib is now the prefix of our dynamic linker.

Caution

It is imperative at this point to stop and ensure that the basic functions (compiling and linking) of the adjusted toolchain are working as expected. To do this, perform a sanity check:

echo 'main(){}' > dummy.c
gcc dummy.c
readelf -l a.out | grep ': /lib'

If everything is working correctly, there should be no errors, and the output of the last command will be:

[Requesting program interpreter: /lib/ld.so.1]

Note that /lib is now the prefix of our dynamic linker.

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. The most likely reason is that something went wrong with the specs file amendment above. Any issues will need to be resolved before continuing on with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out

10.9. GMP-5.0.2

GMP is a library for arithmetic on arbitrary precision integers, rational numbers, and floating-point numbers.

10.9.1. Installation of GMP

Note

If you are compiling this package on a different CPU than you plan to run the CLFS system on, you must replace GMP's config.guess and config.sub wrappers with the originals. This will prevent GMP from optimizing for the wrong CPU. You can make this change with the following command:

mv -v config{fsf,}.guess
mv -v config{fsf,}.sub

Prepare GMP for compilation:

CPPFLAGS=-fexceptions CC="gcc -isystem /usr/include" \
CXX="g++ -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ./configure --prefix=/usr --enable-cxx --enable-mpbsd

Compile the package:

make

Important

The test suite for GMP is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make install

10.9.2. Contents of GMP

Installed libraries: libgmp.[a,so], libgmpxx.[a,so], libmp.[a,so]

Short Descriptions

libgmp

Contains the definitions for GNU multiple precision functions.

libgmpxx

Contains a C++ class wrapper for GMP types.

libmp

Contains the Berkeley MP compatibility library.

10.10. MPFR-3.0.1

The MPFR library is a C library for multiple-precision floating-point computations with correct rounding.

10.10.1. Installation of MPFR

Prepare MPFR for compilation:

CC="gcc -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ./configure --prefix=/usr --enable-shared \
    --with-gmp=/usr

Compile the package:

make

Important

The test suite for MPFR is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make install

10.10.2. Contents of MPFR

Installed libraries: libmpfr.[a,so]
Installed directory: /usr/share/doc/mpfr

Short Descriptions

libmpfr

The Multiple Precision Floating-Point Reliable Library.

10.11. MPC-0.9

MPC is a C library for the arithmetic of complex numbers with arbitrarily high precision and correct rounding of the result.

10.11.1. Installation of MPC

Prepare MPC for compilation:

CC="gcc -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  EGREP="grep -E" ./configure --prefix=/usr

Compile the package:

make

Important

The test suite for MPC is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make install

10.11.2. Contents of MPC

Installed libraries: libmpc.[a,so]

Short Descriptions

libmpc

The Multiple Precision Complex Library.

10.12. PPL-0.11.2

The Parma Polyhedra Library (PPL) provides numerical abstractions especially targeted at applications in the field of analysis and verification of complex systems. CLooG-PPL requires this library.

10.12.1. Installation of PPL

Prepare PPL for compilation:

CPPFLAGS=-fexceptions CC="gcc -isystem /usr/include" \
CXX="g++ -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ./configure --prefix=/usr --enable-shared \
    --disable-optimization

Compile the package:

make

Important

The test suite for PPL is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make install

10.12.2. Contents of PPL

Installed programs: ppl-config, ppl_lcdd
Installed libraries: libppl.[a,so], libppl_c.[a,so], libpwl.[a,so]
Installed directories: /usr/share/doc/ppl, /usr/share/doc/pwl

Short Descriptions

ppl-config

Outputs information about the PPL installation

ppl_lcdd

Reads an H-representation of a polyhedron and generates a V-representation of the same polyhedron

libppl

The Parma Polyhedra Library (PPL).

libppl_c

The Parma Polyhedra Library bindings for C.

libpwl

The Parma Watchdog Library

10.13. CLooG-PPL-0.15.11

CLooG-PPL is a library to generate code for scanning Z-polyhedra. In other words, it finds code that reaches each integral point of one or more parameterized polyhedra. GCC links with this library in order to enable the new loop generation code known as Graphite.

10.13.1. Installation of CLooG-PPL

Prepare CLooG-PPL for compilation:

CC="gcc -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ./configure --prefix=/usr --enable-shared --with-gmp \
    --with-ppl

Compile the package:

make

Important

The test suite for CLooG-PPL is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make install

10.13.2. Contents of CLooG-PPL

Installed programs: cloog
Installed libraries: libcloog.[a,so]
Installed directory: /usr/include/cloog

Short Descriptions

cloog

Loop generator for scanning Z-polyhedra

libcloog

The Chunky Loop Generator.

10.14. Zlib-1.2.5

The Zlib package contains compression and decompression routines used by some programs.

10.14.1. Installation of Zlib

Prepare Zlib for compilation:

CC="gcc -isystem /usr/include" \
CXX="g++ -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ./configure --prefix=/usr

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

The previous command installed two .so files into /usr/lib. We will move it into /lib and then relink it to /usr/lib:

mv -v /usr/lib/libz.so.* /lib
ln -svf ../../lib/libz.so.1 /usr/lib/libz.so

10.14.2. Contents of Zlib

Installed libraries: libz.[a,so]

Short Descriptions

libz

Contains compression and decompression functions used by some programs

10.15. Binutils-2.21.1a

The Binutils package contains a linker, an assembler, and other tools for handling object files.

10.15.1. Installation of Binutils

Verify that the PTYs are working properly inside the build environment. Check that everything is set up correctly by performing a simple test:

expect -c "spawn ls"

This command should give the following output:

spawn ls

If, instead, it gives a message saying to create more ptys, then the environment is not set up for proper PTY operation. This issue needs to be resolved before running the test suites for Binutils and GCC.

The Binutils documentation recommends building Binutils outside of the source directory in a dedicated build directory:

mkdir -v ../binutils-build
cd ../binutils-build

Prepare Binutils for compilation:

CC="gcc -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ../binutils-2.21.1/configure --prefix=/usr \
    --enable-shared

Compile the package:

make configure-host

Important

During make configure-host you may receive the following error message. It is safe to ignore.

WARNING: `flex' is missing on your system. You should only
need it if you modified a `.l' file. You may need the `Flex'
package in order for those modifications to take effect. You
can get `Flex' from any GNU archive site.
make tooldir=/usr

The meaning of the make parameter:

tooldir=/usr

Normally, the tooldir (the directory where the executables will ultimately be located) is set to $(exec_prefix)/$(target_alias). Because this is a custom system, this target-specific directory in /usr is not required.

Important

The test suite for Binutils is considered critical. Do not skip it under any circumstance.

Test the results:

make check

Install the package:

make tooldir=/usr install

Install the libiberty header file that is needed by some packages:

cp -v ../binutils-2.21.1/include/libiberty.h /usr/include

10.15.2. Contents of Binutils

Installed programs: addr2line, ar, as, c++filt, gprof, ld, nm, objcopy, objdump, ranlib, readelf, size, strings, and strip
Installed libraries: libiberty.a, libbfd.[a,so], and libopcodes.[a,so]
Installed directory: /usr/lib/ldscripts

Short Descriptions

addr2line

Translates program addresses to file names and line numbers; given an address and the name of an executable, it uses the debugging information in the executable to determine which source file and line number are associated with the address

ar

Creates, modifies, and extracts from archives

as

An assembler that assembles the output of gcc into object files

c++filt

Used by the linker to de-mangle C++ and Java symbols and to keep overloaded functions from clashing

gprof

Displays call graph profile data

ld

A linker that combines a number of object and archive files into a single file, relocating their data and tying up symbol references

nm

Lists the symbols occurring in a given object file

objcopy

Translates one type of object file into another

objdump

Displays information about the given object file, with options controlling the particular information to display; the information shown is useful to programmers who are working on the compilation tools

ranlib

Generates an index of the contents of an archive and stores it in the archive; the index lists all of the symbols defined by archive members that are relocatable object files

readelf

Displays information about ELF type binaries

size

Lists the section sizes and the total size for the given object files

strings

Outputs, for each given file, the sequences of printable characters that are of at least the specified length (defaulting to four); for object files, it prints, by default, only the strings from the initializing and loading sections while for other types of files, it scans the entire file

strip

Discards symbols from object files

libiberty

Contains routines used by various GNU programs, including getopt, obstack, strerror, strtol, and strtoul

libbfd

The Binary File Descriptor library

libopcodes

A library for dealing with opcodes—the “readable text” versions of instructions for the processor; it is used for building utilities like objdump.

10.16. GCC-4.6.0

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

10.16.1. Installation of GCC

The following patch contains a number of updates to the 4.6.0 branch by the GCC developers:

patch -Np1 -i ../gcc-4.6.0-branch_update-1.patch

Apply a sed substitution that will suppress the installation of libiberty.a. The version of libiberty.a provided by Binutils will be used instead:

sed -i 's/install_to_$(INSTALL_DEST) //' libiberty/Makefile.in

The GCC documentation recommends building GCC outside of the source directory in a dedicated build directory:

mkdir -v ../gcc-build
cd ../gcc-build

Prepare GCC for compilation:

CC="gcc -isystem /usr/include" \
CXX="g++ -isystem /usr/include" \
LDFLAGS="-Wl,-rpath-link,/usr/lib:/lib" \
  ../gcc-4.6.0/configure --prefix=/usr \
    --libexecdir=/usr/lib --enable-shared --enable-threads=posix \
    --enable-__cxa_atexit --enable-c99 --enable-long-long \
    --enable-clocale=gnu --enable-languages=c,c++ \
    --disable-multilib --disable-libstdcxx-pch

Compile the package:

make

Important

The test suite for GCC is considered critical. Do not skip it under any circumstance.

Test the results, but do not stop at errors:

make -k check

The -k flag is used to make the test suite run through to completion and not stop at the first failure. The GCC test suite is very comprehensive and is almost guaranteed to generate a few failures. To receive a summary of the test suite results, run:

../gcc-4.6.0/contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have not resolved them yet.

Install the package:

make install

Some packages expect the C preprocessor to be installed in the /lib directory. To support those packages, create this symlink:

ln -sv ../usr/bin/cpp /lib

Many packages use the name cc to call the C compiler. To satisfy those packages, create a symlink:

ln -sv gcc /usr/bin/cc

10.16.2. Contents of GCC

Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gccbug, and gcov
Installed libraries: libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.[a,so], libmudflap.[a,so], libmudflapth.[a,so], libssp.[a,so], libssp_nonshared.a, libstdc++.[a,so], and libsupc++.a
Installed directories: /usr/include/c++, /usr/lib/gcc

Short Descriptions

cc

The C compiler

cpp

The C preprocessor; it is used by the compiler to expand the #include, #define, and similar statements in the source files

c++

The C++ compiler

g++

The C++ compiler

gcc

The C compiler

gccbug

A shell script used to help create useful bug reports

gcov

A coverage testing tool; it is used to analyze programs to determine where optimizations will have the most effect

libgcc

Contains run-time support for gcc

libgcov

Library that is linked into a program when gcc is instructed to enable profiling

libgomp

GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran

libmudflap

The libmudflap libraries are used by GCC for instrumenting pointer and array dereferencing operations.

libssp

Contains routines supporting GCC's stack-smashing protection functionality

libstdc++

The standard C++ library

libsupc++

Provides supporting routines for the C++ programming language

10.17. Sed-4.2.1

The Sed package contains a stream editor.

10.17.1. Installation of Sed

Prepare Sed for compilation:

./configure --prefix=/usr --bindir=/bin

Compile the package:

make

Build the HTML documentation:

make html

To test the results, issue: make check.

Install the package:

make install

Install the HTML documentation:

make -C doc install-html

10.17.2. Contents of Sed

Installed program: sed
Installed directory: /usr/share/doc/sed

Short Descriptions

sed

Filters and transforms text files in a single pass

10.18. Ncurses-5.9

The Ncurses package contains libraries for terminal-independent handling of character screens.

10.18.1. Installation of Ncurses

The following patch contains updates from the 5.9 branch by the Ncurses developers:

patch -Np1 -i ../ncurses-5.9-branch_update-2.patch

Prepare Ncurses for compilation:

./configure --prefix=/usr --libdir=/lib \
    --with-shared --without-debug --enable-widec \
    --with-manpage-format=normal

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Move the Ncurses static libraries to the proper location:

mv -v /lib/lib{panelw,menuw,formw,ncursesw,ncurses++w}.a /usr/lib

Create symlinks in /usr/lib:

rm -v /lib/lib{ncursesw,menuw,panelw,formw}.so
ln -svf ../../lib/libncursesw.so.5 /usr/lib/libncursesw.so
ln -svf ../../lib/libmenuw.so.5 /usr/lib/libmenuw.so
ln -svf ../../lib/libpanelw.so.5 /usr/lib/libpanelw.so
ln -svf ../../lib/libformw.so.5 /usr/lib/libformw.so

Now we will make our Ncurses compatible for older and non-widec compatible programs can build properly:

for lib in curses ncurses form panel menu ; do
        echo "INPUT(-l${lib}w)" > /usr/lib/lib${lib}.so
        ln -sfv lib${lib}w.a /usr/lib/lib${lib}.a
done
ln -sfv libncursesw.so /usr/lib/libcursesw.so
ln -sfv libncursesw.a /usr/lib/libcursesw.a
ln -sfv libncurses++w.a /usr/lib/libncurses++.a
ln -sfv ncursesw5-config /usr/bin/ncurses5-config

Now we will create a symlink for /usr/share/terminfo in /usr/lib for compatibility:

ln -sfv ../share/terminfo /usr/lib/terminfo

10.18.2. Contents of Ncurses

Installed programs: captoinfo (link to tic), clear, infocmp, infotocap (link to tic), ncursesw5-config, reset (link to tset), tabs, tic, toe, tput, and tset
Installed libraries: libcursesw.so (link to libncursesw.so), libformw.[a,so], libmenuw.[a,so], libncurses++w.a, libncursesw.[a,so], and libpanelw.[a,so]
Installed directories: /usr/share/tabset, /usr/share/terminfo

Short Descriptions

captoinfo

Converts a termcap description into a terminfo description

clear

Clears the screen, if possible

infocmp

Compares or prints out terminfo descriptions

infotocap

Converts a terminfo description into a termcap description

ncursesw5-config

Provides configuration information for ncurses

reset

Reinitializes a terminal to its default values

tabs

Sets and clears tab stops on a terminal

tic

The terminfo entry-description compiler that translates a terminfo file from source format into the binary format needed for the ncurses library routines. A terminfo file contains information on the capabilities of a certain terminal

toe

Lists all available terminal types, giving the primary name and description for each

tput

Makes the values of terminal-dependent capabilities available to the shell; it can also be used to reset or initialize a terminal or report its long name

tset

Can be used to initialize terminals

libcursesw

A link to libncursesw

libncursesw

Contains functions to display text in many complex ways on a terminal screen; a good example of the use of these functions is the menu displayed during the kernel's make menuconfig

libformw

Contains functions to implement forms

libmenuw

Contains functions to implement menus

libpanelw

Contains functions to implement panels

10.19. Glib-2.28.6

Glib is a tool to help you insert the correct compiler options on the command line when compiling applications and libraries.

10.19.1. Installation of Glib

Prepare Glib for compilation:

./configure --prefix=/usr --sysconfdir=/etc

Compile the package:

make

To test the results, issue: make -k check.

Install the package:

make install

10.19.2. Contents of Glib

Installed programs: gdbus, gio-querymodules, glib-compile-schemas, glib-genmarshal, glib-gettextize, glib-mkenums, gobject-query, gsettings, gtester and gtester-report
Installed libraries: libglib-2.0.so, libgmodule-2.0.so, libgthread-2.0.so, libgobject-2.0.so and libgio-2.0.so
Installed directory: /usr/share/glib-2.0, /usr/share/gtk-doc/html/glib, /usr/lib/glib-2.0 and /usr/include/glib-2.0

Short Descriptions

gdbus

Introspect and call remote objects.

gio-querymodules

gio-querymodules creates a giomodule.cache file in the listed directories. This file lists the implemented extension points for each module that has been found. It is used by GIO at runtime to avoid opening all modules just to find out which extension points they are implementing.

glib-compile-schemas

GSettings schema compiler.

glib-genmarshal

C code marshaller generation utility for GLib closures.

glib-gettextize

glib-gettextize helps to prepare a source package for being internationalized through gettext. It is a variant of the gettextize that ships with gettext.

glib-mkenums

C language enum description generation utility.

gobject-query

gobject-query takes a mandatory argument that specifies whether it should iterate over the fundamental types or print a type tree.

gsettings

gsettings offers a simple commandline interface to GSettings. It lets you get, set or monitor an individual key for changes.

gtester

gtester is a utility to run unit tests that have been written using the GLib test framework.

gtester-report

gtester-report is a script which converts the XML output generated by gtester into HTML.

10.20. Pkg-config-0.26

Pkg-config is a tool to help you insert the correct compiler options on the command line when compiling applications and libraries.

10.20.1. Installation of Pkg-config

Prepare Pkg-config for compilation:

GLIB_CFLAGS="-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include" \
    GLIB_LIBS="-lglib-2.0" \
    ./configure --prefix=/usr

The meaning of the new configure option:

GLIB_CFLAGS="-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include", GLIB_LIBS="-lglib-2.0"

Pkg-config no longer comes with Glib, and because Pkg-config has not been installed itself it needs to be told where Glib is.

Compile the package:

make

To test the results, issue: make check.

Install the package:

make install

10.20.2. Contents of Pkg-config

Installed programs: pkg-config
Installed directory: /usr/share/doc/pkg-config

Short Descriptions

pkg-config

The pkg-config program is used to retrieve information about installed libraries in the system. It is typically used to compile and link against one or more libraries.

10.21. Util-linux-2.19.1

The Util-linux package contains miscellaneous utility programs. Among them are utilities for handling file systems, consoles, partitions, and messages.

10.21.1. FHS compliance notes

The FHS recommends using the /var/lib/hwclock directory instead of the usual /etc directory as the location for the adjtime file. To make the hwclock program FHS-compliant, run the following:

sed -i 's@etc/adjtime@var/lib/hwclock/adjtime@g' \
    hwclock/hwclock.c
mkdir -pv /var/lib/hwclock

10.21.2. Installation of Util-linux

Prepare Util-linux for compilation:

./configure --enable-arch \
    --enable-partx --enable-write --disable-wall

The meaning of the configure options:

--enable-arch

This option allows the arch program to be installed.

--enable-partx

Enables building the addpart, delpart, partx programs.

--enable-write

This option allows the write program to be installed.

--disable-wall

Disables building the wall program, as the Sysvinit package installs its own version.

Compile the package:

make

This package does not come with a test suite.

Install the package:

make install

Move the logger binary to /bin as it is needed by the CLFS-Bootscripts package:

mv -v /usr/bin/logger /bin

10.21.3. Contents of Util-linux

Installed programs: addpart, agetty, arch, blkid, blockdev, cal, cfdisk, chkdupexe, chrt, col, colcrt, colrm, column, ctrlaltdel, cytune, ddate, delpart, dmesg, fallocate, fdformat, fdisk, findfs, findmnt, flock, fsck, fsck.cramfs, fsck.minix, fsfreeze, fstrim, getopt, hexdump, hwclock, ionice, ipcmk, ipcrm, ipcs, isosize, ldattach, line, logger, look, losetup, lsblk, lscpu, mcookie, mkfs, mkfs.bfs, mkfs.cramfs, mkfs.minix, mkswap, more, mount, namei, partx, pg, pivot_root, readprofile, rename, renice, rev, rtcwake, script, scriptreplay, setarch, setsid, setterm, sfdisk, swaplabel, swapoff (link to swapon), swapon, switch_root, tailf, taskset, tunelp, ul, umount, unshare, uuidd, uuidgen, whereis, wipefs, and write
Installed libraries: libblkid.[a,so], libmount.[a,so], and libuuid.[a,so]
Installed directories: /usr/include/blkid, /usr/include/libmount, /usr/include/uuid, /usr/share/getopt, /var/lib/hwclock

Short Descriptions

addpart

Informs the kernel of a new partition

agetty

Opens a tty port, prompts for a login name, and then invokes the login program

arch

Reports the machine's architecture

blkid

A command line utility to locate and print block device attributes

blockdev

Allows users to call block device ioctls from the command line

cal

Displays a simple calendar

cfdisk

Manipulates the partition table of the given device

chkdupexe

Finds duplicate executables

chrt

Manipulates real-time attributes of a process

col

Filters out reverse line feeds

colcrt

Filters nroff output for terminals that lack some capabilities, such as overstriking and half-lines

colrm

Filters out the given columns

column

Formats a given file into multiple columns

ctrlaltdel

Sets the function of the Ctrl+Alt+Del key combination to a hard or a soft reset

cytune

Tunes the parameters of the serial line drivers for Cyclades cards

ddate

Gives the Discordian date or converts the given Gregorian date to a Discordian one

delpart

Asks the kernel to remove a partition

dmesg

Dumps the kernel boot messages

fallocate

Preallocates space to a file

fdformat

Low-level formats a floppy disk

fdisk

Manipulates the partition table of the given device

findfs

Finds a file system by label or Universally Unique Identifier (UUID)

findmnt

Lists mounted filesystems or searches for a filesystem

flock

Acquires a file lock and then executes a command with the lock held

fsck

Is used to check, and optionally repair, file systems

fsck.cramfs

Performs a consistency check on the Cramfs file system on the given device

fsck.minix

Performs a consistency check on the Minix file system on the given device

fsfreeze

Suspends and resumes access to a filesystem

fstrim

Discards unused blocks on a mounted filesystem

getopt

Parses options in the given command line

hexdump

Dumps the given file in hexadecimal or in another given format

hwclock

Reads or sets the system's hardware clock, also called the Real-Time Clock (RTC) or Basic Input-Output System (BIOS) clock

ionice

Gives and sets program I/O scheduling class and priority

ipcmk

Creates various IPC resources

ipcrm

Removes the given Inter-Process Communication (IPC) resource

ipcs

Provides IPC status information

isosize

Reports the size of an iso9660 file system

ldattach

Attaches a line discipline to a serial line

line

Copies a single line

logger

Enters the given message into the system log

look

Displays lines that begin with the given string

losetup

Sets up and controls loop devices

lsblk

Prints information about block devices

lscpu

Prints CPU architechture information

mcookie

Generates magic cookies (128-bit random hexadecimal numbers) for xauth

mkfs

Builds a file system on a device (usually a hard disk partition)

mkfs.bfs

Creates a Santa Cruz Operations (SCO) bfs file system

mkfs.cramfs

Creates a cramfs file system

mkfs.minix

Creates a Minix file system

mkswap

Initializes the given device or file to be used as a swap area

more

A filter for paging through text one screen at a time

mount

Attaches the file system on the given device to a specified directory in the file-system tree

namei

Shows the symbolic links in the given pathnames

partx

Tells the kernel about the presence and numbering of on-disk partitions

pg

Displays a text file one screen full at a time

pivot_root

Makes the given file system the new root file system of the current process

readprofile

Reads kernel profiling information

rename

Renames the given files, replacing a given string with another

renice

Alters the priority of running processes

rev

Reverses the lines of a given file

rtcwake

Enters a system sleep state until a specified wakeup time

script

Makes a typescript of a terminal session

scriptreplay

Plays back typescripts created by script

setarch

Changes reported architecture in new program environment and sets personality flags

setsid

Runs the given program in a new session

setterm

Sets terminal attributes

sfdisk

A disk partition table manipulator

swaplabel

Prints or changes the label or UUID of a swap area

swapoff

Disables devices and files for paging and swapping

swapon

Enables devices and files for paging and swapping and lists the devices and files currently in use

switch_root

Switches to another filesystem as the root of the mount tree

tailf

Tracks the growth of a log file. Displays the last 10 lines of a log file, then continues displaying any new entries in the log file as they are created

taskset

Retrieves or sets a process's CPU affinity

tunelp

Tunes the parameters of the line printer

ul

A filter for translating underscores into escape sequences indicating underlining for the terminal in use

umount

Disconnects a file system from the system's file tree

unshare

Runs a program with some namespaces unshared from parent

uuidd

A daemon used by the UUID library to generate time-based UUIDs in a secure and guranteed-unique fashion.

uuidgen

Creates new UUIDs. Each new UUID can reasonably be considered unique among all UUIDs created, on the local system and on other systems, in the past and in the future

whereis

Reports the location of the binary, source, and man page for the given command

wipefs

Wipes a filesystem signature from a device

write

Sends a message to the given user if that user has not disabled receipt of such messages

libblkid

Contains routines for device identification and token extraction

libmount

Contains routines for parsing the /etc/fstab, /etc/mtab, and /proc/self/mountinfo files, managing /etc/mtab, and configuring various mount options

libuuid

Contains routines for generating unique identifiers for objects that may be accessible beyond the local system

10.22. E2fsprogs-1.41.14

The E2fsprogs package contains the utilities for handling the ext2 file system. It also supports the ext3 and ext4 journaling file systems.

10.22.1. Installation of E2fsprogs

The E2fsprogs documentation recommends that the package be built in a subdirectory of the source tree:

mkdir -v build
cd build

Prepare E2fsprogs for compilation:

../configure --prefix=/usr --with-root-prefix="" \
    --enable-elf-shlibs --disable-libblkid \
    --disable-libuuid --disable-fsck \
    --disable-uuidd

The meaning of the configure options:

--with-root-prefix=""

Certain programs (such as the e2fsck program) are considered essential programs. When, for example, /usr is not mounted, these programs still need to be available. They belong in directories like /lib and /sbin. If this option is not passed to E2fsprogs' configure, the programs are installed into the /usr directory.

--enable-elf-shlibs

This creates the shared libraries which some programs in this package use.

Compile the package:

make

To test the results, issue: make check.

Install the binaries, documentation and shared libraries:

make install

Install the static libraries and headers:

make install-libs

10.22.2. Contents of E2fsprogs

Installed programs: badblocks, chattr, compile_et, debugfs, dumpe2fs, e2freefrag, e2fsck, e2image, e2initrd_helper, e2label, e2undo, filefrag, fsck.ext2, fsck.ext3, fsck.ext4, fsck.ext4dev, logsave, lsattr, mk_cmds, mke2fs, mkfs.ext2, mkfs.ext3, mkfs.ext4, mkfs.ext4dev, mklost+found, resize2fs, and tune2fs
Installed libraries: libcom_err.[a,so], libe2p.[a,so], libext2fs.[a,so], and libss.[a,so]
Installed directories: /usr/include/e2p, /usr/include/et, /usr/include/ext2fs, /usr/include/ss, /usr/share/et, /usr/share/ss

Short Descriptions

badblocks

Searches a device (usually a disk partition) for bad blocks

chattr

Changes the attributes of files on an ext2 file system; it also changes ext3 file systems, the journaling version of ext2 file systems

compile_et

An error table compiler; it converts a table of error-code names and messages into a C source file suitable for use with the com_err library

debugfs

A file system debugger; it can be used to examine and change the state of an ext2 file system

dumpe2fs

Prints the super block and blocks group information for the file system present on a given device

e2freefrag

Reports free space fragmentation information

e2fsck

Is used to check, and optionally repair ext2, ext3 and ext4file systems

e2image

Is used to save critical ext2 file system data to a file

e2initrd_helper

Prints the FS type of a given filesystem, given either a device name or label

e2label

Displays or changes the file system label on the ext2 file system present on a given device

e2undo

Replays an undo log for an ext2/ext3/ext4 filesystem

filefrag

Reports on how badly fragmented a particular file might be

fsck.ext2

By default checks ext2 file systems

fsck.ext3

By default checks ext3 file systems

fsck.ext4

By default checks ext4 file systems

fsck.ext4dev

By default checks ext4dev file systems

logsave

Saves the output of a command in a log file

lsattr

Lists the attributes of files on a second extended file system

mk_cmds

Converts a table of command names and help messages into a C source file suitable for use with the libss subsystem library

mke2fs

Creates an ext2, ext3 or ext4 file system on the given device

mkfs.ext2

By default creates ext2 file systems

mkfs.ext3

By default creates ext3 file systems

mkfs.ext4

By default creates ext4 file systems

mkfs.ext4dev

By default creates ext4dev file systems

mklost+found

Used to create a lost+found directory on an ext2 file system; it pre-allocates disk blocks to this directory to lighten the task of e2fsck

resize2fs

Can be used to enlarge or shrink an ext2 file system

tune2fs

Adjusts tunable file system parameters on an ext2 file system

libcom_err

The common error display routine

libe2p

Used by dumpe2fs, chattr, and lsattr

libext2fs

Contains routines to enable user-level programs to manipulate an ext2 file system

libss

Used by debugfs

10.23. Coreutils-8.12

The Coreutils package contains utilities for showing and setting the basic system characteristics.

10.23.1. Installation of Coreutils

A known issue with the uname program from this package is that the -p switch always returns unknown. The following patch fixes this behavior for all architectures:

patch -Np1 -i ../coreutils-8.12-uname-1.patch

Now prepare Coreutils for compilation:

./configure --prefix=/usr \
    --enable-no-install-program=kill,uptime \
    --enable-install-program=hostname

Compile the package:

make

The test suite of Coreutils makes several assumptions about the presence of system users and groups that are not valid within the minimal environment that exists at the moment. Therefore, additional items need to be set up before running the tests. Skip down to “Install the package” if not running the test suite.

Create two dummy groups and a dummy user:

echo "dummy1:x:1000:" >> /etc/group
echo "dummy2:x:1001:dummy" >> /etc/group
echo "dummy:x:1000:1000::/root:/bin/bash" >> /etc/passwd

Now the test suite is ready to be run. First, run the tests that are meant to be run as user root:

make NON_ROOT_USERNAME=dummy check-root

The testsuite will now be run as the dummy user. Fix the permissions for a few files to allow this:

chown -Rv dummy config.log {gnulib-tests,lib,src,tests}

Then run the remainder of the tests as the dummy user:

src/su dummy -c "make RUN_EXPENSIVE_TESTS=yes check"

When testing is complete, remove the dummy user and groups:

sed -i '/dummy/d' /etc/passwd /etc/group

Install the package:

make install

Move programs to the locations specified by the FHS:

mv -v /usr/bin/{cat,chgrp,chmod,chown,cp,date} /bin
mv -v /usr/bin/{dd,df,echo,false,hostname,ln,ls,mkdir,mknod} /bin
mv -v /usr/bin/{mv,pwd,rm,rmdir,stty,true,uname} /bin
mv -v /usr/bin/chroot /usr/sbin

Other Coreutils programs are used by some of the scripts in the CLFS-Bootscripts package. As /usr may not be available during the early stages of booting, those binaries need to be on the root partition:

mv -v /usr/bin/{[,basename,head,install,nice} /bin
mv -v /usr/bin/{readlink,sleep,sync,test,touch} /bin
ln -svf ../../bin/install /usr/bin

10.23.2. Contents of Coreutils

Installed programs: [, base64, basename, cat, chcon, chgrp, chmod, chown, chroot, cksum, comm, cp, csplit, cut, date, dd, df, dir, dircolors, dirname, du, echo, env, expand, expr, factor, false, fmt, fold, groups, head, hostid, hostname, id, install, join, link, ln, logname, ls, md5sum, mkdir, mkfifo, mknod, mktemp, mv, nice, nl, nohup, od, paste, pathchk, pinky, pr, printenv, printf, ptx, pwd, readlink, rm, rmdir, runcon, seq, sha1sum, sha224sum, sha256sum, sha384sum, sha512sum, shred, shuf, sleep, sort, split, stat, stdbuf, stty, sum, sync, tac, tail, tee, test, timeout, touch, tr, true, truncate, tsort, tty, uname, unexpand, uniq, unlink, users, vdir, wc, who, whoami, and yes
Installed library: libstdbuf.so
Installed directory: /usr/lib/coreutils

Short Descriptions

base64

Base64 encode/decode data and print to standard output

basename

Strips any path and a given suffix from a file name

cat

Concatenates files to standard output

chcon

Changes security context for files and directories

chgrp

Changes the group ownership of files and directories

chmod

Changes the permissions of each file to the given mode; the mode can be either a symbolic representation of the changes to make or an octal number representing the new permissions

chown

Changes the user and/or group ownership of files and directories

chroot

Runs a command with the specified directory as the / directory

cksum

Prints the Cyclic Redundancy Check (CRC) checksum and the byte counts of each specified file

comm

Compares two sorted files, outputting in three columns the lines that are unique and the lines that are common

cp

Copies files

csplit

Splits a given file into several new files, separating them according to given patterns or line numbers and outputting the byte count of each new file

cut

Prints sections of lines, selecting the parts according to given fields or positions

date

Displays the current time in the given format, or sets the system date

dd

Copies a file using the given block size and count, while optionally performing conversions on it

df

Reports the amount of disk space available (and used) on all mounted file systems, or only on the file systems holding the selected files

dir

Lists the contents of each given directory (the same as the ls command)

dircolors

Outputs commands to set the LS_COLOR environment variable to change the color scheme used by ls

dirname

Strips the non-directory suffix from a file name

du

Reports the amount of disk space used by the current directory, by each of the given directories (including all subdirectories) or by each of the given files

echo

Displays the given strings

env

Runs a command in a modified environment

expand

Converts tabs to spaces

expr

Evaluates expressions

factor

Prints the prime factors of all specified integer numbers

false

Does nothing, unsuccessfully; it always exits with a status code indicating failure

fmt

Reformats the paragraphs in the given files

fold

Wraps the lines in the given files

groups

Reports a user's group memberships

head

Prints the first ten lines (or the given number of lines) of each given file

hostid

Reports the numeric identifier (in hexadecimal) of the host

hostname

Reports or sets the name of the host

id

Reports the effective user ID, group ID, and group memberships of the current user or specified user

install

Copies files while setting their permission modes and, if possible, their owner and group

join

Joins the lines that have identical join fields from two separate files

link

Creates a hard link with the given name to a file

ln

Makes hard links or soft (symbolic) links between files

logname

Reports the current user's login name

ls

Lists the contents of each given directory

md5sum

Reports or checks Message Digest 5 (MD5) checksums

mkdir

Creates directories with the given names

mkfifo

Creates First-In, First-Outs (FIFOs), a “named pipe” in UNIX parlance, with the given names

mknod

Creates device nodes with the given names; a device node is a character special file, a block special file, or a FIFO

mktemp

Creates temporary files in a secure manner; it is used in scripts

mv

Moves or renames files or directories

nice

Runs a program with modified scheduling priority

nl

Numbers the lines from the given files

nohup

Runs a command immune to hangups, with its output redirected to a log file

od

Dumps files in octal and other formats

paste

Merges the given files, joining sequentially corresponding lines side by side, separated by tab characters

pathchk

Checks if file names are valid or portable

pinky

Is a lightweight finger client; it reports some information about the given users

pr

Paginates and columnates files for printing

printenv

Prints the environment

printf

Prints the given arguments according to the given format, much like the C printf function

ptx

Produces a permuted index from the contents of the given files, with each keyword in its context

pwd

Reports the name of the current working directory

readlink

Reports the value of the given symbolic link

rm

Removes files or directories

rmdir

Removes directories if they are empty

runcon

Runs a command with specified security context

seq

Prints a sequence of numbers within a given range and with a given increment

sha1sum

Prints or checks 160-bit Secure Hash Algorithm 1 (SHA1) checksums

sha224sum

Prints or checks SHA224 checksums

sha256sum

Prints or checks SHA256 checksums

sha384sum

Prints or checks SHA384 checksums

sha512sum

Prints or checks SHA512 checksums

shred

Overwrites the given files repeatedly with complex patterns, making it difficult to recover the data

shuf

Write a random permutation of the input lines to standard output or a file

sleep

Pauses for the given amount of time

sort

Sorts the lines from the given files

split

Splits the given file into pieces, by size or by number of lines

stat

Displays file or filesystem status

stdbuf

Runs a command with modified buffering operations for its standard streams

stty

Sets or reports terminal line settings

sum

Prints checksum and block counts for each given file

sync

Flushes file system buffers; it forces changed blocks to disk and updates the super block

tac

Concatenates the given files in reverse

tail

Prints the last ten lines (or the given number of lines) of each given file

tee

Reads from standard input while writing both to standard output and to the given files

test or [

Compares values and checks file types

timeout

Runs a command with a time limit

touch

Changes file timestamps, setting the access and modification times of the given files to the current time; files that do not exist are created with zero length

tr

Translates, squeezes, and deletes the given characters from standard input

true

Does nothing, successfully; it always exits with a status code indicating success

truncate

Shrinks or expands a file to the specified size

tsort

Performs a topological sort; it writes a completely ordered list according to the partial ordering in a given file

tty

Reports the file name of the terminal connected to standard input

uname

Reports system information

unexpand

Converts spaces to tabs

uniq

Discards all but one of successive identical lines

unlink

Removes the given file

users

Reports the names of the users currently logged on

vdir

Is the same as ls -l

wc

Reports the number of lines, words, and bytes for each given file, as well as a total line when more than one file is given

who

Reports who is logged on

whoami

Reports the user name associated with the current effective user ID

yes

Repeatedly outputs “y” or a given string until killed